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A general method for the calculation of the [21 --. 10] Wigner operators is presented and used to
obtain specific results for the SU, group. General expressions for the SU; reduced Wigner operators
are given for tensor operators transforming like the representations [100], [110], and [210).

L. INTRODUCTION AND SUMMARY

'HE present series of papers' is concerned with

the explicit constructive determination of the
representations of the semisimple Lie groups by
an extension of the Racah~Wigner angular momen-
tum calculus which was developed for SU,. As
discussed earlier, the program to be followed has
been laid out in detail by the work of Wigner® and
Racah® and consists of essentially three problems:
(a) the determination of invariant operators
(“Casimir invariants”) that uniquely specify the
irreducible representations, (b) the determination
of sufficient ““labeling operators’” to uniquely specify
the states of an irreducible representation, and (c)
the determination of explicit Wigner coefficients by

* Supported in part by the U. S. Army Research Office
(Durham) and the National Science Foundation.

1L, C. Biedenharn, J. Math. Phys. 4, 436 (1963); G. E.
Baird and L. C. Biedenharn, ibid. 4, 1449 (1963); 3, 1723
§1964); 5, 1730 (1964); these are referred to as I, II, III, and

V, respectively.

tE. P. Wigner, lecture notes, Princeton University,
Princeton, New Jersey, 1955 (unpublished); “On the Matrices
which Reduce the Kroneckex: Product of Representations
of Simply Reducible Groups,” in Selected Papers on the Quan-
tum Theory of Angular Momentum, edited by L. C. Bieden-
hgéxsx)and H. Van Dam (Academic Press Inc.,, New York,
1 3

3 G. Racah, Ergeb. d. exacten Naturw. 37, 28 (1965).

solution of the problem of simple reducibility.*"* In
I a more complete discussion of these problems is
given and solution for general Casimir operators
(I,) for the unitary groups is constructed.® II con-
tains a solution of the labeling for the unitary
groups—based on Weyl’s branching theorem—which
is used there to explicitly determine the matrices
of the generators for the unitary groups, SU,. In
IIT the analog of the SU, 1-j symbol is defined
for SU, and an appropriate generalization to SU,
of the Condon—Shortley phase convention is given.
In IV it is shown that the multiplicity of the general
SU, tensor operator may be put into a one-to-one
correspondence with the multiplicity structure of the
corresponding states, and a definition for the reduced
Wigner operators is introduced.

It is the purpose of the present paper to derive
detailed results for the SU; [210] Wigner operators
(octet operator matrix elements) which couple an

4+ E. P. Wigner, Am. J. Math, 63, 57 (1941).

§ Actually problems (b) and (c) are not distinct, for in
both the problem is to uniquely specify the states of the
irreducible representations of a sub-group contained in the
uniquely labeled states of the irreducible representation of
the larger group. Conditions under which such a problem is
soluble have been discussed by E. P. Wigner, unpublished.

8 For other recent work on this problem see: M. Umezawa,
Nuclear Phys. 57, 65 (1964); M. Micu (unpublished).
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arbitrary representation [pg] with the representation
[210] to give a final representation [p'¢’], where
[pq] = [p’¢’]. The method employed is outlined in
IV and depends upon results contained in II, III,
and IV for the explicit calculation of the formulas.
The method is completely general, as one may cal-
culate both the nondiagonal [21 --- 10] Wigner
operator matrix elements for the general unitary
group SU, by its use as well as the diagonal operator
matrix elements (from the generators and the sym-
metric coupling coefficient). However, detailed re-
sults are given only for the SU; case.

For completeness we also give (as Wigner coeffi-
cients) matrix elements of the two octet operators

1 1
(21110) and (22100), which couple the representation

1
[pg] to itself. For the (21110) operator this requires
only a phase change from results given already in II.

Similarly (22100) is completely defined in I-III as

the (orthogonal) operator
X — (I/1)Xa

upon normalizing. Numerical and algebraic tables
of these operators have appeared earlier.”®

We feel that these results are of interest for
several reasons: First the method used is a general
one, and it may be employed to calculate [21 -- - 10]
‘Wigner operator matrices for the general unitary
group. The presentation of these results is a logical
extension of the prior papers in this series’ and
depends extensively upon results contained in these
papers; a detailed example is very helpful in illustrat-
ing these basic results. An adequate and economical
notation for the general SU, reduced Wigner operator,
introduced in IV, is also employed. Thus the pre-
sentation of a general scheme for the calculation
of the [21 --- 10] Wigner operators for SU, with
phase conventions included, gives a synoptic view
of the entire problem. Matrix elements of the com-
plete “octet’” tensor operators in SU; are of con-
siderable current interest in elementary-particle
physics; it is this interest which accounts for the
large number of more or less complete numerical
and algebraic tabulations.” To a large extent these

7 Numerical tabulations of the operators have been given
by: J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963); K. T.
Hecht, Bull. Am. Phys. Soc. 8, 57 (1963); P. McNamee,
(819%4 g)‘hilton, and Frank Chilton, Rev. Mod. Phys. 36, 1005

. & Algebraic_results for these operators include: L. C.
Biedenharn, Phys. Letters 3, 69 (1962); 3, 254 (1963); D. L.
Pursey, Proc. Roy. Soe. (London) A275, 284 (1963).

. °J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963), gave
six tables of numerical values; P. McNamee, S. J. Chilton,
and Frank Chilton, Rev. Mod. Phys. 36, 1005 (1964), gave
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earlier results satisfy the particular needs of el-
ementary-particle physics; the major reason for the
current work lies rather in its emphasis on the general
structure of the tensor operator classification prob-
lem and its systematic resolution. The key to this
resolution lies in the fundamental Wigner coefficients
which, in a logical sense, imply the structure of
the general tensor operator. These fundamental
Wigner coefficients have been given already for the
general unitary groups in II,

However, it is essential to note that any explicit
Wigner operators obtained from these general re-
sults must properly take into account the canonical
phase conventions discussed in III. It is therefore
useful to specialize to U; and give explicit results
to illustrate both the method and the necessarily
complicated notational conventions.

II. THE SU; (“SPINOR”) WIGNER COEFFICIENTS

The results to follow are all dependent upon the
explicit matrices'® for the SU, generators given by
II, Eqgs. (60)—(62). It was noted that the matrix
element of E,, factored into a reduced matrix
element multiplied by an SU,_; Wigner coefficient.
Thus we obtain the SU,; spinor and conjugate
spinor (the [100] and [110] SU, representations)
Wigner coefficients from the matrices of the gen-
erators E; , and E, ;. We may further factor these
SU; “spinor” Wigner coefficients into a reduced
Wigner coeflicient multiplied by an SU, Wigner
coefficient.

The reduced Wigner coefficient is a function of
the U, and U, representation labels but not of the
U, label (the SU, “magnetic’”’ quantum number).
All of the dependence upon the U, label is contained
in the SU, Wigner coefficient.* The changes in the
U, and Uj; representation labels can be indicated

five numerical tables; M. A. Rashid, Nuovo Cimento 26,
118 (1962), gave six numerical tables; A. R. Edmonds, Proc.
Roy. Soc. (London) A268, 567 (1962), gave five numerical
tables. For algebraic results see: L. (e} Biedenharn, Phys.
Letters 3, 69 (1962); 3, 254 (1963); D. L. Pursey, Proc. Roy.
Soc. (London) A275, 284 (1963); D. Lurie and A. J. Maec-
farlane, J. Math Phys. 5, 565 (1964). (These results for
matrix elements of the octet operator differ from our non-
diagonal matrices in the normalizing factors of certain of the
octet matrix elements. Our [210] matrix elements correspond
to Wigner coefficients for these cases.) See also J. G. Kuriyan,
D. Lurie, and A. J. Macfarlane, J. Math. Phys. 6, 722 (1965).

10 Note the two misprints in IT, Eq. (60): (a) the factor
(Mjn — Miaoy — J £ 7 + 1) should read:

(mjn = min — 3 +1 + 1);
éb) in the final Gelfand pattern “m’ should be replaced

Y Mn,n.
1 The transformation from the U. Gelfand labels to the
more familiar notation for SU; is accomplished by use of
the relations: 2J = my,2 — Mg} M = my,1 — §(m12 + ma,e).
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by specifying two indices 7, and ,. For the spinor
reduced Wigner coefficients an arbitrary U, rep-
resentation [m; sm. sms, 5] is coupled to the U, rep-
resentation [100]; the final Gelfand state label will
then be identical to the initial Gelfand state label
except that

’ —
Mija-i =

Mi;,a-i + 1: (1)

where m is the initial state and m’ is the final state.
An arbitrary state (m) is given by

m,3 Ms,3 Ms,3

Mg,z . )

my .,

(m) =

my,2

In the interest of convenience to the reader let
us note the translation of the Gelfand pattern into
the usual elementary particle symbols. The state
(m) given in Eq. (2) above would read

y q 0
_ Y p+q _; Y ptyg
(m) = I+2+ 3 I+2+ 3 ,
Y p+gq
L+5+53

6

where I, I,, and Y are the isospin, 2 component
of isospin, and the hypercharge, respectively; p and
¢ designate the representation by a Young pattern,
but often one sees in the literature the notation
A=p—qu=4q

An alternate specification of the reduced Wigner
operator is given in IV and is summarized here.
The reduced canonical tensor operator is designated
by the notation

o -0

®B):n—-1

where the operator (4) is in SU,, the operator (B)
is in SU,_,, and the dot product implies a conjuga-
tion of (B).

Several things about this notation should be
noted. The notation ““(a) : n’’ designates the upper
(SU,) Gelfand pattern of {4), including the labels
of [A]. Similarly “(8) : n — 1” designates the
upper (SU,.,) Gelfand pattern of (B), including
the labels of [B]. Thus the labels “(a)” and “(b)”
on the right hand side of Eq. (4) are suppressed;
however, the labels a; .-, and b;,.., must agree
identically for the dot product to be meaningful.
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The remaining labels a;,; and b;,; ( < n — 2)
are summed over in the dot product. Thus the
reduced tensor operator notation is a complete
specification of the changes in the Gelfand pattern.

As is shown in IV the upper Gelfand pattern
specifies the changes in the SU, representation
labels of a Gelfand state by the relations

m:.ﬂ = Miw + At‘y

. ®)
—(i - 1)m.'—1 + Z m; + My,

k=1

A =

where the m; are the fixed diagonal quantum num-
bers of the upper Gelfand pattern and are given
in ITT, Eq. (5). [As these A-values are for SU,, m,
is zero as is A,.]

By comparing this notation to that used in II,
Egs. (60)—(62), one sees that the patterns (¢) and
(8) furnish a complete and unambiguous designation
of the changes in the representation labels [m, ,] —
[m} ] and [m; ,.,] — [m} .-,] induced by the tensor
operator. Thus the notation of Eq. (4) is a direct
generalization of the notation of II, which concerned
only the special changes (&1 in one index only)
associated with the fundamental (“spinor’’) Wigner
operators.

It should be noted, for completeness, that the
explicit. decomposition of the canonical SU, tensor
operator is thus given by iterating the basic de-
composition

@3l -

where the Gelfand pattern given by B and a on
the right specifies the U, pattern (a).

To illustrate the utility of the notation for an
elementary case, the reduced tensor operators for
the [100] representation of SU; are given in Table I.
The nitial SU, representation used in Table I is
[m; s ms,s My s = 0]. Table I is constructed so that
it leads to the final representation labels in U, of
[my, — 06;3 My, — 6&;,3] so that coefficients con-
structed from this table are explicitly orthogonal.
[This choice for the U, labels—which stems from
Condon—Shortley—is not standard (for example, the
last entry in Ref. 9 uses a different convention).]
Table I and following tables give reduced Wigner
coefficients between lezical Gelfand states. Needless
to say, any Wigner coefficient involving the coupling
of a nonlexical Gelfand state is defined to vanish.

The index ¢ used in Table I corresponds to the
index ¢, defined in II. [It indicated that m, s —
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TasLe 1. SU;[100] reduced Wigner coefﬁments (Notethati = 1o a =0 = 1; ea=10 =0
i =3oa=>0=0. 8z) = sign of (z); s(0) = 1)
b
. 0]:3
B = | %= ‘ =
100
® 2
re ) H
FO H(m'i.z"ms_j+'b—1)
i=1
= 3
L0 0] I (mis — mes — 5+ 9)
%
! h . 3 . 3
1 A (s = My — i+ o) (mf,s—m12—1+2)]
1 S(1 — l: . : ; .
( z) ('ml.z — My + 1) X :I==Il Mig — Miy3 — J+ 1
11 0] ik
[ h . 3 .
0 .[:(mlz—ma'—2+@) (mia—'mzz J+3>:|
2 S(2 — . : ; ;
( ) (mi2 — may+ 1) XE My~ M3 — j+ 1
10 iwd
mi,s + 1] Knowledge of this raising action is cients are obtained by multiplying the reduced

contained in the SU,; reduced tensor operator. For
convenience in the writing of Table I, let us make
the following definitions (kronecker &’s):

a= 8,+ 8.,
b = 8"‘1.

Y]

Using these definitions of ¢ and b, we give in Table I
the SU,; [100] (SU; spinor) reduced Wigner co-
efficients. The complete SU; [100] Wigner coeffi-

Wigner coefficients of Table I by the appropriate
SU, spin-3 Wigner coeflicients. In the first column
of Table I the upper Gelfand pattern (8) is specified
where () belongs to the tensor operator

()

In the second column the value of ¢, is given so
that the correspondence between the two alternate

Tasie 11, SU,;[110] reduced Wigner coefficients, (Note thati = 1&®e¢=d=0;i =2o¢=0,d = 1;
1 =3¢ =d=1. 8(x) = sign of (z), s(0) = +1.)
d
. 1 3
@B = | i = ¢ =
110
® 2
2
[1\ H(mi.z—ms_j+i>
=1
- 3
11 TI (s — mas = §+ )
ok
0\ . (mi3—m22_i+2) 3<m‘3"‘m12_].+1>j|*
[10 ( ) (M2 — mg + 1) JI‘II mijs — Miz — §+ 1
- FEE3
1 A (mie— mis — 14 19) 3(m~3—m“—-j+2>]*
2 S2—z|: : L : ; ;
IOJ ( ) (M2 — mep + 1) X:'I-Il mj s — M3 — §+ 1
i#i
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TasLe III. SU; [210] reduced Wigner coefficients. [See Eq. (12) for definition of symbols.)

®) =

4

ab |:3 -
210

® -2

: (m:'.:i — Ma2 — j+ 2)("";.3 — M — 1+ 2)(mi.3 — My — t 4 3)
S(l - ])[ A(ml,2 — Ma,2 + 1)

3 i
X H (mk.a —m, — k + 1)]

ki

- s (Mo — mis — 14 ) mis — M, — % ‘i.‘ 2)(mis = Myp — i+ 3)
S(2 ])[ A(?nllz - Mg,z + 1)

3 3
X H (mk,a — My — k4 2)]

ki

s (mta — Mo 2 — 1+ 3)(mi.3 — My, — i+ 1)(’”1’.3 — My, — ]+ 2)
S(l ’L)[ A(mx,z — Mz, + 1)

3 i
X kII (mk.s — m. — k+ 2)]

k7t

. ('mi,3 — My — j+ 2)(7’”:'.3 — me — j+ 1)(m1.2 — mis — 2+ "')
S(2 - 'L)[ A(m1.2 — Mg + 1)

3 3
X H (’mk,s - Mz, — k + 3)]

ki

R (ml.z — mis — 24+ i)(mi.z — My — j+ 2)
S(2 B Z)S(l - j)[ A(mx.z — mg,2 + 1)(’m1‘2 — my, + 2)

3 3 3
X H(mk,s — Ma,y — k + 3) X H(mks —m, —k+ 1)]
ok ok
[(mi.a — my— 1+ 2)(’”.‘.3 — My — 1+ 3)(’”:'.3 — M — j+ 1)(’":‘.3 — My — § 2):|i
24(my,2 — map)(my,2 — My + 2)

3

X H (2mk.3 — My, — My — 2k -+ 4)
ok
ki

. . (m.‘.a — My —t+ 3)(’”7«1,2 — my3 — 1 + ])
_S(l B 1)3(2 B ])[ A(ml.z - mz,z)(mx,z — my + 1)

3 3 *
X H(mk,3 —ma—k+2) X ;[I(mk.a — My — k+ 2):|
k=1 =1
e koti

[3(7".',3 — my, — ¢+ 2)(’”1.',3 — My — 1+ 3)(""1'.3 —m.—j+ 1)(mi.3 — me — j+ 2)]}
24
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descriptions of the reduced tensor operator may be
easily made. [The index 7, indicates that the label
My 2 —> My 0 + 1.]

In Table II the SU, [110] (conjugate spinor) re-
duced Wigner coefficients are given. The conjugate-
spinor Wigner coefficients factor into the given
reduced Wigner coefficient multiplied by an SU,
Wigner coefficient.

For convenience in writing Table II let us define
the parameters

c=1— 51‘.1 - 6:‘.2)

®)
d = 1 - 6.',1.

Using the above definitions of ¢ and d, the [110]
SU; reduced Wigner coefficients are given. Table II
is arranged in the same manner as Table I; how-
ever, 7, now specifies the lowering of an SU, label
[that is, m,, » — m,,. — 1]. Again in Table II
the initial SU, representation is [m, s my 3 Mz s = 0]
and the reduced Wigner coefficients couple to the
final U, labels [m, 5 + ;.5 ma,2 + 8. ,3], leading once
again to explicitly orthonormal su; states.

III. DETERMINATION OF THE “VECTOR”
COEFFICIENTS

It is well known that the generators of the unitary
group SU, play a dual role: (1) as operators and (2)
the carrier space of the adjoint representation. It is
the latter role of which we make use: It establishes
a mapping from the generators onto the basis states
of the adjoint representation X, — |X,).

Thus one has the result that the matrices of the
generators (when properly phased and normalized)
are themselves Wigner coefficients. (For SU, these
are the Wigner coefficients C3..Jy.) These coeffi-
cients are, however, necessarily diagonal between
the initial and final representations. To obtain the
nondiagonal parts of the Wigner coefficients for SU,,
one may make use of a mapping of the generators
of SU, into SU,,,, systems. This mapping is achieved
by using the anticommutator

E;,;—>[E. . E;]s = E;,E:; + E, E;.. (9)

Thus by mapping into operators of the next
higher group (SU,.,), we may “raise” and “lower”
the representation labels in SU, and obtain non-
diagonal Wigner coefficients via the mapping of
generators onto states

E.;— |E:;). (10)

As is discussed above, a phase is involved in this
mapping and must be included in a calculation of
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the Wigner coefficients by this technique. The phase
convention used here is a generalization of the
Condon—Shortley phase convention for SU, and
results in a consistent phase convention for any
generator mapped onto an equivalent state. The
results of this convention for SU, are

E;.;—> (‘)iﬂ IE-'.:'>:
H;,— (‘)Hl |H.),

where the E;,; are the nondiagonal (in the SU,_;
subgroup) generators and the H, are the n — 1
diagonal generators.

By use of the Wigner coefficients in II, Eqs. (60)~
(62) and of the two mappings (1) SU, generators
into SU., ., operators and (2) generators onto states,
the nondiagonal matrix elements of the SU, ‘“vector”
operators may be determined. These matrix elements
factor into a product of a reduced matrix element
multiplied by an SU,., Wigner coefficient (as did
the spinor Wigner coefficients).

Specific results for the SU; [210] (SU; ““vector’)
Wigner coefficients have been obtained by use of
the techniques outlined above. These results are
presented in Table IIT using the reduced canonical
tensor operator notation given in IV and summarized
in Sec. IT above.

For an SU, representation [m, s m. 5 ms,3=0], the
reduced tensor operator notation gives the changes
in these SU, labels [as is indicated by Eq. (5)].
Table III is further constructed so that the final
SU, representation labels are {m, , + d m,,, + dJ,
where d is given in Eq. (12) below.

Let us define the parameters a, b, ¢, d, and 4 for
use in Table III by

14 0in -+ Bi.2) b=
¢ = 08;,+ 8.1 8.3 d =

an

a = 5i.ay

—66.3 + 55.3}

4 = {kI:Il [(mk,a — Mi3 — E+ z)
hi

X (me,s — mjs —k + j)]}

(12)

X (m;s — m;3—j+ i)(m-',s —mjs—t-+j+1),

where ¢ and j are indices in the formulas of Table ITI
and obey the relations 1 < 4, < 8,7 = §.

In Table III the upper Gelfand pattern corre-
sponding to the pattern (8) of Eq. (4) gives the
SU, character of the reduced Wigner operators. Thus
the upper Gelfand patterns (220), (210), and (200)
give the SU, A,-values of 2, 0, and —2. From the
relationship J = 3(mi,2 — ms,2), one sees that these
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Tasie IV. Generator reduced matrix elements (phased).

1
11 1:
® = 8| _
210
® 2
0 (ml,s —_ ’ml.z)(’ml,z — my3 + 1)(m1'2 — Mz + 2)-*
10 L 6(7’?«1,2 - Mg,z -+ l)Iz m
1 _—(m1.3 — Mgy + D(my s — Mo 0) (a2 — Mys 1)—§
10 L 6("”1.2 — Mg, + 1)12 .
' 2 ) —(ml.a — M+ 1)(m1,2 - mz.a)(ml.z —~ ma 3 + 1)_}
2 1] L G(mx.z — My, + 1)12 .
( 1 ] _gml.a — My + 2)(’"2.3 — Mo + 1)(m2.2 - ma,3)_%
2 1) L 6(""1,2 — My, + l)Iz .
0 0
12 0]
1 ] [(ml.Z - m2.2)(m1.2 — Mma s + 2)}*
L2 0 121,
[
2 } 0
12 0
[ 1 _[%(ml.Z + m2.2) - %(ml.s + my + ’ma.a)]

SU, A,-values imply that AJ = 41, 0, and —1,
and thus this set of operators acts like an SU,
representation with J = 1, that is, an SU, “vector.”
Similarly, the SU, character of the other terms may
be calculated.

The upper pattern (8) also gives the SU; character
of the reduced Wigner operator. By application of
the generator H, [see III, Eq. (8)] one may find
the change Am, in the m, eigenvalue. Thus,

Amg = §(my,3 + M20) — §(ma s + Moy + mae),
= $(Br.a + B2n) — 32+ 1+ 0), (13)
= §(B1.s + B2.2) — 1.
Table IV contains the (2 111 o) reduced Wigner

coefficients. [These are just the generator matrix
elements suitably phased by use of the phase con-
vention given in Eq. (11).]

Table V contains reduced matrix elements of
the (2 2110 o operator which is just the operator

[X* — (I,/I,)X]. Both of the Tables IV and V
are diagonal in their S8U; representation labels
coupling the representation [m; sm, ams. 5] to itself;
the reduced operators of these tables lead to the final
SU, representation [m,,.m, .]. For convenience in
writing Table V let us make the following definitions:

Ma,2),
3(my,2 + mas) — 3(My1s + Moz + M),
I, = #{(m,s — m3.3)2 + (ma,s — mMa5)’
— (my,3 — Mg 5)(My,3 — My,5)
+ 3(my,s — ms,8)],
27037 (my 3 — 2ma3 + My 5)
X 2my,3 — Mmg,3 — M3z + 3)
X (1,3 + Mes — 2ms,3 + 3),
B = 6G1; + vsI; — I)/1,

where I, and I, are the two invariants (defined in I)

A= 3(my,2 —

m =

a4

I,
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of SU,. (Note that when B is zero, the operator is the SU, [210] Wigner operators which are non-

defined to vanish—this occurs for ‘triangle’ rep- diagonal in representation labels while Table IV and

resentations.) Table V give the [210] operator matrix elements
Thus Table III gives a complete specification of which are diagonal in representation labels.

1
20
TasLe V, (2 1 0) operator reduced matrix elements: [X'3) — (I,/I4)X]. [Cf. Eq. (14) for symbols.]

8) =

1
2013 _
210
® 2
i 1 (mys — my)(mys — mys + D(myy — My + 2)_*
3[)‘ m + % 3(13/12)][ B(ml,z — Mg + 1) |
1 (mys — My + D(ma s — My )(Man — my 5 + 1)_*
i+ m+ 34+ 3(13/12)][ B(my, — mae + 1) J
_ L _ (mys — Mo+ D(my» — mys)(my,, — ms s + 1)—*
IN—m+ 3 3(13/12)][ B(my, — mas + 1) i
_ 1 (mis — mys + 2(mys — My, + D(my, — my, )_*
T | S Blmes =t )

[(ml.s - ml.?)(m1.2 — my 3+ 1\('"11.2 — M3,z + 2)(””1.3 — My, + 2)(’"2.3 — My, + 1)(m2_2 - ‘ms,a)]*
9B(m1,2 — My, + 2)(m1.2 — Mg, + 1)

(im + DO+ DIL + dmly + (1 — m?)] — (13/12)}[(m1_2 B B 2)]*

__I:(ml.s — Mi,2 + D(ml.z - mz.a)(mx.z — M3.3 + 1)(7”1.3 — Myt 1)(m2,3 - mz.z)(mz,z — M3,3 + 1)]‘
QB(ml.Z — My + 1)("”1,2 - m?,z)

—~[6/BIMEMA + 1) — m® — L] ~ (I/L,)m}
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A simple connection between the radial Schradinger equation for the bound states of a hydrogen
atom with angular momentum [ and that of an isotropic harmonic oscillator of even dimension from
2 to 4] + 4 is noted. The case of highest dimensionality 4] - 4 is shown to lead in a very simple way
to the energy levels and degeneracies of the hydrogen atom, once the energy levels of a one-dimen-

sional harmonie oscillator are known.

INTRODUCTION

HE purpose of this paper is to point out an

apparently unnoticed connection between the
radial Schrédinger equations of the hydrogen atom
and isotropic harmonic oscillators of various di-
mensions. The connection is made by performing
simple transformations on the equation and the
wavefunctions. As a byproduct, we get what is
perhaps the easiest way to obtain the energy levels
of the hydrogen atom (nonrelativistic) once one
has solved the problem of the one-dimensional har-
monic oscillator.

TRANSFORMATION OF THE HYDROGEN
ATOM EQUATION

We start from the radial Schriodinger equation
for levels of the hydrogen atom with angular mo-
mentum ! and negative energies Eq

hz d I + DA 2
{ omar T ( 2—:-7;1') 2% - En}y(r) = 0.

We define a dimensionless argument p

B\
r= (—SmEH) p =l

in terms of which the equation is
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Substituting p = z° we get
2 l 1 2
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Now we substitute for the wavefunction y(l2”) =
z*u(x), where \ remains to be fixed
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By choosing A = 21 + 2 — L, where L is any
integer between 0 and 2 -} 1 inclusive, this equation
becomes

@  N—-1d LL+N-=2
T dz z’
226 [ 2m \}
2+ 22 (2 e < o,

where we have denoted N = = 4] 4 4 — 2L.
The first two terms in the equation are the radial
part of the Laplacian operator in N dimensions,
while the third term is the result of the N-dimen-
sional Laplacian acting on an N-dimensional spher-
ical harmonic of order L.

The equation we have obtained may be compared
with the radial equation for an N-dimensional
isotropic harmonic oscillator of mass m, frequency
w, and “angular momentum’’ L, written in terms
of the dimensionless argument z = (mew/k)r

da N-—-14d
{a‘;f+ z  dz

LL+ N -2 2Eo,°
- ( ) - ( ) =0,
The lowest dimensionality which can thus be ob-
tained is N = 2, for which we must take L = 21 4 1.
Any other even dimensionality up to N = 41 + 4

can be obtained by choosing successively lower L
until for L = 0 the highest N is obtained.

THE ENERGY LEVELS OF HYDROGEN
(NONRELATIVISTIC)

The simplest way to obtain these is by consider-
ing the highest &, which goes together with L =
This means that the levels of hydrogen correspond
in this case to those levels of the (41 4 4)-dimen-
sional harmonic oscillator which are invariant under
rotations in (41 - 4)-dimensional space. The ground
state of this oscillator is clearly such a state. Any ex-
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cited state of an oscillator can be obtained by acting
on the ground state with suitable functions of the
creation operators a% (# = 1, --- N) of the N
different cartesian oscillators into which it decom-
poses. In order to make only scalar states from the
ground state, we must act on it only with scalar
functions of a*%. Any such operator must be a func-
tion of A* = XV, (%)% so we can generate all
the desired states of the oscillator by acting on
the ground state with A™ any number of times.
In this way it is clear that we get an infinite multiplet
of nondegenerate oscillator states with energies

Eole.n=h£0(2l+2+2n) n=0,1,2,.-..
This means that the hydrogen atom energies for a
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for a certain [ are going to be given by

226" ( 2m )‘ _ 2E0pen _

___ Zem
2% (1 + n + 1)°
Thus, the quantum number # defined to characterize

the harmonic oscillator levels is just the radial
quantum number of the hydrogen atom.

Ex(l,n) =
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The equations of motion for the resonant modes in a lossy cavity, which couples them through
the nonresonant thermal loss mechanism described by Senitzky, are examined. The second-order
perturbation treatment of dissipation is justified for long time intervals by reference to an intermit-
tent similarity transformation. Self-consistent expressions for commutators such as {{Pn(t:), Pm(t2)])a,
P, being the operator-amplitude of the electric field in the nth mode, as averaged over the loss mechan-
ism d with respect to its diagonal density matrix, are obtained from Laplace transform expressions
for these operators. These averaged commutators deseribe correlations of fluctuations in different
modes, in a way compatible with the ordinary commutation relations for lossless modes. The self-
consistent anticommutator expressions, averaged over the loss mechanism, imply the Bose~Einstein
formula for thermal energy in each mode at time & = #,. This is shown from direct examination of
anticommutators and also from an integration of the correlation function. Commutators for the
total electric and magnetic fields at two space-time points in the cavity have the proper causal prop-
erties. The dissipation terms in the field equations of motion cannot be derived from an equivalent
Hamiltonian unless a modified analysis such as that of Kemeny is undertaken. Finally, the approxi-
mate equations of motion for the mode operator-amplitudes of a parametric amplifier are derived in
the creation-annihilation operator framework and the spectral density of noise obtained at the signal
frequency. The equilibrium noise present due to coupling with the idle modes is proportional to the
number of photons in the idle frequency mode instead of that number plus one, in contrast to the
conclusion of Wagner and Hellwarth. In this system the loss-averaged operators evolve from initial
thermal equilibrium values to parametric equilibrium values according to nonlinear equations of
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motion containing time dependent commutators.

1. INTRODUCTION

N Part I of this series' we developed the equations
of motion for the electric and magnetic field
operator-amplitudes of one resonant cavity mode
interacting with a thermal wall loss mechanism
and molecules. The nonlinear equations for the time-
average field energy and molecular power flow were
accurate through second-order perturbation theory,
i.e., through terms quadratic in the field-wall loss
and field-molecular coupling coefficients. The per-
turbation expressions for these operators as derived
for a “short’” time interval (long compared to the
signal period but short compared to the decay time)
were extended over long time intervals by applica-
tion of an intermittent similarity (IS) transforma-
tion which restored the perturbed molecular operator
matrices to their unperturbed forms at the end of
each short time interval. This transformation also
acted upon the density matrix of the system in the
Heisenberg representation. Fortunately the descrip-
tion of the expectation value of time-average field
energy and its dispersion over long intervals did
not involve the individual elements of the density
matrix.
In this description of the stimulated emission
process we tacitly assumed along with Senitzky®
* Pregent address: Lawrence Radiation Laboratory, Uni-
versity of California, Livermore, California.

1 R. M. Bevensee, J. Math, Phys. (N. Y.) 5, 308 (1964).
2 ], R. Senitzky, Phys. Rev. 119, 670 (1960).

that the field-loss mechanism interaction depended
upon the field amplitude times a zero-order loss
mechanism expectation value. We discarded the
detailed behavior of the loss mechanism operators®
in the equation of motion for the field-loss coupling
operator I' (F = T'/4wc in this paper) as driven by
the electric field, and we took the loss mechanism
density matrix to be purely diagonal.

In order to justify the use of zero-order loss
mechanism operators through successive short-time
intervals with many resonant cavity modes present,
we deduce in Sec. 2 an appropriate IS transforma-
tion. This same transformation applied to the global
density matrix as always a direct product of field, loss
mechanism, and perhaps molecular density’ matrices
makes the expeetation values of all operators depend
on the diagonal portion of the loss mechanism
matrix as well as on a transformed field expectation

3 This means replacement of an expectation value like

(6% CmIRD(LY, [T(t), Bea(ts)]P(t:)]

X e—imd(”(‘x—h)/f‘)d
by
([T, [TO®,), 5 DaP(ts)

where superscript (0) denotes a zero-order unperturbed opera-
ator of the loss mechanism with Hamiltonian ¢4 and ( )q im-
plies an expectation value over loss mechanism space only. In
this paper the exponentials are retained and only the zero-
order operators are involved in expectation values during short
time intervals.
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which is just the initial expectation within errors
quadratic in the (short) time interval. In this way
the effects of the interaction appear only in the field
portion of the density matrix.

As a result we are able to derive the self-consistent
steady-state commutators and anticommutators be-
tween modes of frequency o~w, as averaged over
the loss mechanism space, with fractional error on
the order of 8/w, B being the dissipation constant
for energy. These expectations imply a subsequent
averaging to be performed over field space. It seems
to us, therefore, that Senitzky’s formalism is en-
tirely adequate for treating the dissipation phe-
nomena during long time intervals.

We now clarify our analysis by comparison with
the treatment of Willis and Bergmann® of the equa~
tion of motion for the density matrix of an arbitrary
physical system in contact with an infinite thermal
reservoir of fermion (or boson) free particles. These
authors treated weak but sustained interaction be-
tween system and reservoir by generalizing the
Wigner—Weisskopf treatment of line broadening in
such a way that only a single reservoir particle
was present at a time. The result was a self-con-
sistent solution for the matrix elements of a time-
independent kernel K in the equation of motion
ds/dt = Kp, p being the density matrix of the sys-
tem as the global density matrix z (called p, herein)
averaged over the reservoir coordinates: 3 = (ii)4.
Subscript d denotes a loss mechanism ensemble
average. As a result they avoid the inconsistent
rerandomization of phase procedure at the end of
each “short’” time interval (short in the sense de-
fined earlier) but at the expense of overly restrictive
assumptions for the sake of self-consistency. Perhaps
the most serious one ig the restriction of the matrix
elements of Kp(f) to certain system energy states’
to guarantee the time independence of K., These
relations could not reasonably be applied to the
resonant modes of a cavity in contact with a fermion
reservoir. They take the reservoir to be diagonal
at all times and obtain equations of motion for
matrix elements like (m|a|n) between reservoir states
which “move” according to the elements of g which
are diagonal in reservoir coordinates. We, too, find
that, even though the first-order perturbation of the
reservoir by the system leads to dissipation, only
the diagonal elements of 7 in loss mechanism space
appear in expectation values of operators averaged

( :3 20) R. Willis and P. G. Bergmann, Phys. Rev, 128, 391
1962).

8 For example, E, — B, + B, — Eg = 0, the Greek letters
denoting states of the system.
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over this space during a succession of short-time
intervals, in each of which the expectations of field
operators can be followed. We do not make their
assumption of one reservoir particle at a time;
rather, the important matrix elements of the loss
mechanism states represent transitions between all
energy levels ¢ and 7. The equation of motion which
Willis and Bergmann obtain is valid over a time
interval such that A’t < 1, A measuring the strength
of interaction, and our solution is valid over a
succession of similar intervals.

In this paper we assume throughout, except in
Sec. 8, that no energy sources are present in the
cavity. We first derive the equations of motion for
the electric and magnetic field operators P,(f) and
@.(t) of a typical nth mode of a lossless cavity,
coupled to the other modes through the agency of
the wall loss mechanism. The philosophical question
then arises: do we know the commutation relations
between the various mode amplitudes, consistent
with the loss mechanism coupling? The work in
Sec. 8 demonstrates the plausible fact that if the
loss mechanism were gradually turned on we would
have to study the system with equations of motion
containing time-dependent commutators which would
evolve, in a loss-averaged sense, to thermal equi-
librium values. About all we can safely say about a
cavity in which the fields have come to equilibrium
with the loss mechanism is that the density matrix
of the latter is diagonal or nearly so. It is sensible,
therefore, to consider a subensemble of systems all
with the same field density matrix initially and
derive the equations of motion for the field op-
erators by employing initially unknown commutators
between all pairs of mode operators, averaged over
loss mechanism space.’ These averaged commutators
represent time correlations between mode operators
caused by the driving loss mechanism, as distinct
from the coupling between modes created by the
first-order perturbation in loss mechanism respon-
sible for dissipation. Correlation between modes is
strong if their resonant frequency separation is on
the order of the decay constant of either. The

¢ One might tend to believe that the loss-averaged com-
mutators, and snticommutators such as {[Pu(t:), Pm(fs)])
should be obtained self-consistently from the equations of
motion for the field operators according to the Heisenberg
prescriptions using wunaveraged commutators. Because these
commutators imply correlations in fluctuations between
mode operators due to the zero-order thermal loss mechanism
the commutators should be interpreted as averages over loss
mechanism space. Although dissipation terms appear in the
equations of motion for the field operators from averaging of
the perturbed portion of the loss mechanism over its space,
the significant terms in the similarly averaged commutation

relations result from avera%:i‘ng the products of the operators,
not from the products of the averaged operators.
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averaged commutators (Sec. 4) and anticommutators
(Sec. 5) between mode amplitudes are nonzero be-
cause of the peculiar stochastic properties of the
zero-order uncoupled loss mechanism operator F‘®
which connects the electric field with the loss mech-
anism Hamiltonian. However, we show in Sec. 6
that the self-consistent loss-averaged commutators
for electric and magnetic field components at two
space-time points in the cavity have the causal
properties expected of them.

Senitzky has shown’ that the net commutator
([P.(8), Q.(1)])4 of a single mode interacting with
the loss mechanism remains exactly —i% in the
second-order perturbation treatment. One may verify
the fact that this commutator remains —¢4 even
if an assemblage of molecules is present® with a
Gaussian spread in transition frequencies about the
cavity mode resonant frequency. Now, such a com-
mutator does not represent uncertainties due to
the measurement process but rather correlations in
fluctuations due to the thermal loss mechanism
which determines the minimum uncertainties of
measurement, according to the particular relations
[P.(1), Q.(t)] = —ih and AP,AQ, =< & for a given
nth mode. This statement is in accord with Bohr’s
philosophy® but it seems somewhat of a coincidental
yvet consistent fact that the thermal dissipation
mechanism has the property of maintaining precisely
this uncertainty product which is ordinarily inferred
from measurement limitations neglecting dissipation.

With respect to a general Hamiltonian we can
define and use an equivalent Hamiltonian (Sec. 7)
from which the equations of motion for the loss-
averaged field operators follow from the ordinary
commutation relations for a lossless cavity, with
two exceptions, First, the dissipation terms must
be obtained by averaging certain loss mechanism
terms in the correct equations of motion for the
field operators if the procedure of this paper is
followed. Second, the terms in the equations of
motion due to nonthermal energy sources and sinks
must be obtained from the new-equilibrium, loss-
averaged commutation relations. A loss term in
the equivalent Hamiltonian quadratic in field vari-
ables would not yield the correct dissipation terms
in the equations of motion for the field operators
unless that term involved both physical and non-
physical or adjoint field operators and a varia-
tional or action principle were employed to obtain

7 1. R. Senitzky, Phys. Rev. 115, 227 (1959).
8 I, R. Senitzky, Phys. Rev. 119, 1807 (1960).
» D. Bohm and Y. Abaronov, Phys. Rev. 122, 1649 (1961).
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the equations of motion. For example, Kemeny"’
employed Schwinger’s action principle as applied
to the system Lagrangian written in terms of ad-
joint operators defined on the reverse time track
of the system.

According to the results of Sec. 5 the spectral
density of energy in the cavity is composed of con-
tributions from the modes with resonant frequencies
near the frequency of interest, each mode having
a Lorentzian spectrum about its own resonant fre-
quency. The total energy in each of these spectrums
is just the Bose-Einstein value. When the parametric
coupling described by Wagner and Hellwarth'' is
introduced the equations of motion for the field
operatorsin the creation-annihilation operator frame-
work are altered and a fundamental result emerges.
That portion of the equilibrium thermal noise
spectrum in the range of signal frequencies due to
the parametric coupling is proportional to the num-
ber of photons #n; in the relevant idler mode, not
n; -+ 1. This comes about because the spectrum
of energy must be measured by the full averaged
anticommutator, not half of it as Wagner and
Hellwarth claim, because of the unusual stochastic
nature of the loss mechanism. The symmetrical
form of the anticommutator implies the same de-
pendence of spectral intensity upon n,., the number
of photons in the relevant signal frequency mode,
as upon n;.

2. PROPERTIES OF THE LOSS MECHANISM

According to Ref. 2 the electric and magnetic
fields of the nth cavity mode, defined without loss,
are

En(r) t) = —47rcP,,(t)u,,(r), (la‘)
Hn(ri t) = an X u, (lb)

with the vector patterns conveniently normalized as

fu,.~u,,, dv = bum, f V X4,V X U dv = 8,k
(2a)
k, = w,/c, (2b)

n being the unit normal pointing out of the cavity.
Classically the equation of motion for Q,(f) is ob-
tained by substituting mode expansions for E and
H into one of Maxwell’s equations,

u, X n = 0 on walls,

VXE==[ [0 Xt — e v — Hfe, 3)

10 G, Kemeny, Phys. Rev. 133, A69 (1964).
u'W. G. Wagner and R. W. Hellwarth, Phys. Rev. 133,
A915 (1964).
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whereupon dot-multiplication by V X u, and inte-
gration over the cavity volume yields an equation
for . in terms of P, and an additional integral
over the walls of the form

f @5 Y Qu)V X tnV Xty @)
because £ « J « n X H on the walls. Quantum
mechanically the dissipation term may be obtained
by including a field-loss mechanism energy term
in the Hamiltonian, of the form

3y = dmc D, a,Py()F, F = F® + FY 5)
k

(superscript 1 denotes a perturbation due to the

coupling) whereupon it turns out that after averaging

the operators P, and @, over loss mechanism space

the equation of motion for P, and not @, contains

a term of the form

; P,.()ona,. ©)

This corresponds to (4) if a,a, has the significance
of ?

Cmlly = (deVXum-V Xu,.)

-1
([ @ xuwra) .
For the mode coupling of interest k, = k..

The zero-order loss mechanism operator F* has
only off-diagonal matrix elements F” (t),;=F,;¢'“**,
where it is convenient to take each F,; to have
phase zero. The stochastic properties of F‘© are
summarized by the following loss mechanism en-

semble expectations®:
(FOW)a=0
(47rc>2<F(0) (tl)F(O)(tz»d

= (hA/Z)I:j; de’ B(wl)e—‘y'+|'w’(t;—t,)

(8a)

+ fom dw'B(w')e"“"““"], v = k' /KT, (8b)

The (0), refers throughout this paper to an ensemble
average of an operator over the loss mechanism
states, with respect to its density operator ps,. 4
is a normalizing factor in its unperturbed density

2 Actually oxF stands for ax.Fz: + ... + axF, in (5) and
Cnlim = Otnzlmz ~+ ... | Gnsom, 0 (6) and (7). FO in (11)
and (13) and 3C;® of (14), as well as the zero-order operators
of (12), can be broken into component form whence the IS
transformation of (15) should be considered as three separate
transformations applied to the z, y, and z operators separately.
Any term appearing in the form anam or anF should be inter-
preted in a dot-product sense.
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matrix representation

—~En/kT
Pmn = 5,”,.116 " ]

(92)

where

A—l — E e—E’i/kT o fm p(E)E—E/kT dE. (gb)
0

H

In (8b) B(v’) [Eq. (32) of Ref. 2] is an integral over
energy of a function of p(E) as well as of K and the
magnitudes of the matrix elements of F‘* connect-
ing various loss dipole states. Eq. (8b) implies a
subsequent integration over times ¢, and {, when
calculating the expectation value of any operator
over the loss mechanism space.

It does not seem possible to derive self-consistent
commutation relations by the methods of this paper
unless there is a strong weighting factor in favor
of one frequency w in (8b), w being the resonant
frequency of that mode for which we wish com-
mutation relations with neighboring modes. In fact,
these relations for a given mode with its neighbors
are not unduly affected until the frequency separa-
tions of the neighbors from the given mode become
comparable to the decay constant, and at high
frequencies (usually above the microwave range)
where this occurs the strong weighting factor is
present. For example, in the He-Ne gas laser
described by Haken and Sauermann'® the decay
constant is considerably less than the frequency
spacing of the two active cavity modes so the con-
siderations of our paper are unimportant. _

For strong weight over a narrow range of fre-
quencies about « (8) are written in the forms

(FO@))a =0, (10a)
(e (F @ (t)F® (1))
= (4hBo/w)(l — ") '[e”
« fo‘” PR
+ f: d ;"“'“'-“’:l . (10b)
with
Bo = (w/8)AB()(l ~ ), v = hwo/kT. (10c)

The decay constant for the energy in the nth mode
turns out to be Bya.an.

This description of the interaction between the
modes and loss mechanism is founded upon an es-
sential continuum of energy states of the latter

13 H, Haken and H. Sauermann, Z. Physik 173, 261, Sec. 7
(1963); also ibid. 176, 47 (1963).
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and will become suspect at high frequencies above
the optical range where the separation in energy
between consecutive modes becomes comparable to
the level separation of the loss mechanism.

We now show that an IS transformation exists
at the end of a short time interval which will re-
store the F- and 3C,-matrices (3¢ is the loss mech-
anism Hamiltonian) to their unperturbed off-and on-
diagonal forms, respectively. These simple forms
enable a repetition of the same field-loss mechanism
description through successive (short) time intervals,
with a changing field density matrix (see Appendix
A). The general element of F* is, from the Heisen-
berg equations of motion for the F and 3C4 operators,
which both commute (self-consistently it turns out)
with the field in the interaction term (5),

Fm(t),& — hz f dtlf dtg <‘l« iraledg—- h]/h{F(O)(t ),

X [F (), @] 47 [y, 3 a,P(h).
B

With
[FO), (), 100 =

i foats_swiit
X ¢ ©ikts + % Ew;,-F,-,-F,‘ke wfats i -’
i

—h Z wikFiiFike‘m“h
(12)

where
Wiy = Wy T Wiy

substitution of (12) into {11), with the exponentials
diagonal, yields, after changing

fo‘dtl fohdtz to j:dtzft:dt,

and performing the t,-integration,

t
FO(f), = %159 f dt, 3 Fo T,y
0 i

X Sin w,-,-(t bt tz) Z aaPn(tz); (133')
F“)(t),-p, — é”rﬁfemut
3
X f dt 8¢, 1) 3 aPa(t),  (13b)
a n
where
S, ) = —i T FFa(eiems — ristom),
(13¢)

58 is stnctly off-diagonal,
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4re

ch(ll)(t)ik =T skFakf dt, e+ Za’n (8)

(38(1));"‘.

The asterisk denotes a complex conjugate.

The T-matrix which restores F to unperturbed
form, TF@)T * = F(t), and 3¢, to the diagonal
form 3¢” within terms proportional to the a, has
the elements

Ty =1,

(14)

(15)
4:1{' (4 ! iwifts
T, =—Fy f dty € 2 aPlt) = —TA.
1A o n
Here T7T = I, diagonal, with error terms proportional
to the (a,t)”. One can verify the fact that the first-
order elements of TF‘”T' cancel those of TF™ Tt

F®, and the first-order element (T3c{*T"),, cancels
(TP T

3. EQUATIONS OF MOTION FOR THE
CAVITY MODE OPERATORS

The Hamiltonian for the complete system, in-
cluding the interaction energy (5), is

5(3.,.“ fdv (ZTPmmPnn

Q.Y X U QY X ) + S+ S (168)
By orthogonality of the mode patterns this is
2
Koy = ; [2’4‘7321): -+ % Qi]
+ 4xc D a,P.F + %4 (16b)

The loss-averaged commutators to be derived seli-
consistently are written

([P,.(t), Pka)])ﬂ = ithk} Xnn = O; (1731)
<[Pﬁ(t)! Qk(t)]>d = _ihYuk) Yrm = 1, (17b)
({Qn(t): Qk(t)])d = ikznh Zm; = 0, (170)

The Heisenberg equations of motion yield, for the
field operators,

Pn(t) = (’iﬁ)_‘l Pm sctot}
= —(w}/4r)Q, + kg Unc* X P

- (wi/ 47"62) Y@ + 4mc kE X F (t)) (18)

with a similar equation for Q,.
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In integral form this is

P,(t) = PO(t) + 4mc ; X
X fot dt, [F® + FP,, coswa(t — 1)
. ,
—% Y, [ @ F® +FL,

X sin wa(t — 1) + f dty Vialt))

Wn

4nc?

X cosw,(t — t;) —

]
X f dty Vau(ts) sin w,(t — 1,), (19a)
0
with a similar equation for @, in which
PP =~/ O = 4eP®,  (19)
2
Vln = Z |:41r62X,,;,P;, - —(?LE Y,,),Qk:| y (190)
kn 4mc
2
V2n = Z |:4’l|'C2 YouP: + Zr“jk_z Znth]' (19d)
ko n C

Now we average P, and @, of direct physical
interest over the loss mechanism ensemble; we ex-
amine first the term

f ' dt, (F(t,))a sin wa(t — 1)
= f' dty 3 (k| paF™® |K) sin wu(t — &)

¢
=/ dt, kZ (pa)iF ™ (£ sin w,(t — 1), (20)

F® by (11) and (13) is the special case of an op-
erator in 0,0, form (f—field; d—dissipation mech-
anism). We show in Appendix A, Eq. (A5), that
only the diagonal p{® enters into the global ex-
pectation value of such an operator. Therefore (20)

yields, with reference to (132),
FOWN =24 T T TR

X fo it sinen(t — &) 3 aPu(t) @1)

and this yields, in a straightforward fashion® for
(20),

R. M. BEVENSEE

¢
% [t F(w)sinantt — 1)

=8 Ta | " Pt coswn(l — ). (22)

Similarly, the other F™™ term appearing in the
equation of motion for @, analogous to (19) eval-
uates as

H
— fo dty (FV (1)) €08 onlt — 1)

= B, Za, fo ‘ dt, P(t) sin w,(t — t,) (23)

Upon substituting (22) and (23) into (19a) and
its mate for Q, and differentiating twice so as to
form second-order differential equations we obtain,
with B, = Bocutta, 23 e X = 0and X ¥ = a,
as discussed in Appendix C, and the relation

(wlzc/ 47"62)an = 47rchnl:
from symmetry considerations,
B,(§) + 8Py + wiP, = — (/) F O (8)
ha 47"0230 E a:XnkP 1Y
k
— oo Zatpt — Bo ;a:Y.th

{#n

— (W2 /4n)Vaou(t) + Viul8),
Q.(8) + B.Qn + Q. = dmca,(F
+ BF®) + Bo(dnc’ fws,) ; X -

24)

X (Pk + BnPk) - 4W02anﬂo ‘;alpl
— 4nc*By Y Y Py + 47’V + Vine

k#n

(25)

The Laplace transforms of these equations enable
a self-consistent evaluation of the X- and Y-com-
mutators in the next section.

4. THE SELF-CONSISTENT COMMUTATORS

In this section the results and the methods of
obtaining them are merely summarized. The Laplace
transforms of (24) and (25), with

P = [ P a,

for example, yield four groups of terms in each
equation, consisting of (a) initial-value terms labeled
by superscript (a) below, (b) terms proportional to
F®(s), (c) terms proportional to 8,, and (d) terms
involving V,,(s) and V,,(s). A typical commutator
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in the time domain can then be formed, and has
the appearance of

P, Pa] = (55) [ a [ av
[N,,(S), N,,,(s')]e"’“'“
(s — s)(s — sB)( — sa)(s" —8%)’

where N denotes an involved collection of the above
groups of terms. Upon taking an average over the
loss mechanism the NN product of initial-value
terms is retained, the NN 4 NN terms
average to zero, the NN’ terms are quadratic
in 8, and therefore neglected, the N’ N expecta-
tion is nonzero and will be evaluated below along
with the NN contribution, and the NN
terms are quadratic in 8,. The loss-mechanism ex-
pectations of terms involving V,, and V,, in (26)
are zero for reasons presented in Sec. 8 following (56).

We now show that the N*”N‘° terms in (26),
the ones proportional to both 8, and F”, are
negligible. Examination of (19), (20), (22), and (23)
shows that the B,-terms in P arise from averaging
the F*"’ terms. So we examine averages like

t t’ .
< fo dt, fo dt, FO(t,) s:;;w,.(t-— t)F ™ (2,)

X

(26)

Xt = 1))
in {({P.(?), P.(t")])a. This average depends on

fo dty (POEFO (), 5 wnlt’ — 1)

Y
= Zf dt, (Pd)quiG'w““
ik Jo

sin
X F(l)(tg).'k cos w,,.(t' - tg), (27)
because only the diagonal elements of p{® are in-

volved. Each ¢k term is zero for the following
reason. If (13b) is substituted into (27) and the
integration carried out with respect to the argument
of F after inverting the order of integration four
sums arise, over the j index in S(z, ¢;). One of the
sums has the form

ei(mu-{-w.)t _ e'i(wu+wn)h

'i(w“ + w,,) !

in which the predominant terms are those for which
Wiy F @, 0. This group of terms will cancel a
similar group and the other two sums will also
cancel provided the loss mechanism is homogeneous
to the extent that

erent E FyF;,

~
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F(“’i; w, + wn)F(wi; w; — wn)
= F(wt' — Way wk)F(“"i + Wny wi)' (28)

So that NN terms are zero in (26).

We have made the assumption that the field op-
erators commute with the coupling operator F =
F® 4 F™ on a loss mechanism ensemble basis.

This will be so, self-consistently, if we can show in
(19) that

f‘ dt1 <[F(°)(tl) + F(l)(tl), F(o)(t)

(1 smn ~
+ PO et — )0, (29)
with F given by (13). Neglecting higher-order
field and loss mechanism correlations this will be
true according to detailed evaluation of the zero-
order portion and for the same reason each first-
order term of (27) was zero.

The conclusion that the NN terms are zero
in (26) is supported by substituting the predominant
term for each P.(s) into a typical term in the
integrand, as obtained from the Laplace transform
of (24), converting the summation into a complex
plane integration, whereupon the result vanishes
as s or & approaches the relevant pole in (26).

The predominant terms in commutator (26), then,
arethe N‘“N'® initial-value terms and the NN ®
terms proportional to {{F‘”(s), F**(s")])s. Straight-
forward evaluation according to the work in Ap-
pendix B yields, for the net commutator

((Pu(tr), Pult2)]a

— _hBecn@n® ~purss Bam SI0 @7 + Wim COS ot

4xc’ D... J
f =14 —4620, (30a)
hBon@n® gors2 Bum SN wiT + wh, COS 0T
T T 4 ¢ D, !
if <0, (30D)
with
Bam = (Ba + Bm)/2
W = @h — wh, o= Im(s,)
= w1l — B./2)1,  (30¢)

Dnm = ﬁ:m + (w:lm)z‘

These expressions were derived self-consistently in
the following way: the N’ N‘®’ portion of the com-
mutator contains exponentially decaying terms; the
NN portion contains initial-value terms like
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{[P.(0), P,(0)])a which decay as ¢ “****i2/2 By
choosing these latter commutators to have the
thermal values specified by (30) for ¢, = ¢, = 0 all
the transient terms cancel in ([P,(t,), P.({:)])a and
this commutator for ;, = {, = t does have the value
specified at ¢ = 0.

Evaluation of the [P,(t,), Q.(f;)] commutator
averaged over loss mechanism space is carried out
analogously; the net value is

<[Pn(t1): Qm(t2)]>d

’ ’ 3 ’
. —gur/2 —Bum COS 0AT + Wpm SIN w7
= tFiBo0tattne " = D ,
nm

if T = tl - tg Z 0, (313:)

4 ’ 3 ’
. 2 —Bum €OS Wt + wh,, SN w7
= 1,hﬂoa,.amea"'/ ne MD nn - )
nm

if r<0. (31b)

The commutator {[Q.(t,), @.(¢)])4 is given by (30)
multiplied by the factor (4nc’/w)?, w, & w,, &= w.

Equations (30) and (31) illustrate correlations
in fluctuations caused by the thermal loss mech-
anism in the following way. If AP,(t,) is the average
thermal fluctuation during a brief time interval
A2 /w, and AP, (t,) is a later thermal fluctuation
then the minimum product of these two is given by
the magnitude of (30b); here AP,(t)AQ.(,) = &
at the end of the brief interval, consistent with the
magnitude of (31) at » = 0.

Equations (30) and (31) evaluated at ¢, = £, = ¢
give the values of X, Y, and Z for (17) as

X = —(w/4nc")Boonotiwsts/ Do,
an = Isoanaklgnk/ an;
Z,,k = (471'62/0))2X,.;,.

(32a)
(32b)
(32¢)

o= w, = oy,

It seems to us these are in error by fractional parts
on the order of B,/w, = Bi/ws.

5. ANTICOMMUTATORS; THERMAL ENERGY
SPECTRUM

The anticommutators such as {((P,(t), Pn(t:)]+)a
averaged over loss mechanism space, where PP, +
PP, = [P, P,bl., are evaluated according to
exactly the same considerations as applied to the
commutators. If the anticommutator associated with
(26) is formed the contribution of the V,,- and
Va-terms is zero for the same reasons in Sec. 4
that these terms were negligible in the commutator.
The effect of the sign difference between commutator
and anticommutator is a removal of the factor ¢
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and evaluation of energy terms. The slowly varying
transient terms which arise from ((F® (¢,), F° (t,)]+ )4
exactly cancel the thermal portion of the initial-
value anticommutators, the net result being

1l'Cz<[Pn(t1’ Pm(t2)]+>d

= %Wth,nm(tl . t2) + E—(ﬁ;-h**ﬂ»ﬂ:)/?

X {TCZ[P ,.(0), P ,,,(0)]+ cos (wht, — wits)

+ z [P.(0), §.(0)]. sin (wit, — w,,',tz)} (33a)
with
o 1 —
Wth.wm(tl - tz) = '2— 1 f :_.y BoOinCtm
€ P"(Bm COS Wit — wl,, sin Wh7)/ Dy,
>< T = tl - tz 2 O, (33b)

€28, €08 WAT — Wi SI0 A7)/ Dam, T < 0.

The bar denotes the nonthermal component of
an operator and ¥ = Aw/kT. The expression for
(@0*/16m¢*){[@.(t), Qm(t2)]s)e, Which is the magnetic
energy in the nth mode for m = n and ¢, = £,, has
the same thermal portion and a slightly different
nonthermal portion. For reference we also quote
the mixed anticommutator

CO([P,‘(t), Qm(t)]+)d(thermal)
14+ 67
1—¢7
By (16b) the total thermal field energy in the
cavity is the sum of the energies in the various

modes, where the energy in the mth mode is ob-
tained by substituting m = n in (33). That energy is

Wamm = (won/2)[1 4 2(e" — 1)—1] = Ffuwnn (35)

= —liw Boa,.amw,’.m/ Dnm-

(34)

the energy of a Bose-Einstein distribution of =
photons among quantum states of the mode.

It is difficult to judge the effect of the coupling
terms in (24) and (25) on the frequency spectrum
of energy without referring to the real correlation
function for the electric (or magnetic) field in the
time domain. According to Cummings' the real
correlation function for the electric field is
T

lime [ B, ¢+ )-E(, 8 dt
T

7o 21" J -
= %([E(T, ¢+ 7'); E(T: t)]+)d
¥ F. W. Cummings, Am. J. Phys. 30, 898 (1962).

¢E(7‘) =

(36)



QUANTUM ELECTRODYNAMICS

by the ergodic properties of the loss mechanism.
The spectral density of electric energy at point r is

Is@) = @/x) fo " gs(r) coswrdr. (37

Evaluation of the nth and mth mode contributions
to ¢(7) is
[¢E(T)]nm = Tcz([Pn(t + T)) an(t)]+>dun(r)'MM(r)) (38)

and this, together with the thermal anticommutator
given by (33), yields the nmth mode component of
the spectral density,

Ea@ln = 52 152 Brnlbunt2
+ Wpmlw — wn)]D;m[(ﬂn/z)z + (“" - wn>2]—luﬂ'um7

(39)
where terms which are smaller by a factor (8/w)*
have been neglected. Summation over m, with

Z,,, U Bumtin/ D =2 01,0, E,,. @ * U/ D =2 0
according to the properties of these terms described
in Appendix C yields, for the spectral electric energy
intensity associated with mode » at point r,

()]

_ % i J_r :j: 5"[(3") + (@ — wn)] ).  (40)

The total electric intensity at « is thus due to the
superposition of Lorentzian spectra, each centered
on one of the mode resonant frequencies and as-
sociated with a mode amplitude of time dependence
€% cos (o t+ ¢.). Integration of (40) over fre-
quency yields precisely the total electric energy
implied by (35).

Regarding the symmetry properties of ¢, it is
easy to see from (33) that a thermal correlation
function such as

¢T."I;l,l(7) = %([EI(T] t + T), El(r” t)]+>d (41)
between the same Cartesian components s at both
points satisfies the relation

¢r.r’;¢.¢'(T) = ¢r.r';s,a'(_‘r)7 (42)
for 8 = s because the nmth term in the mode sum-
mation for = > 0 is exactly the mnth term in the
summation for r < 0. Even if &' = s, (42) is still
true, verified by summing over the appropriate in-
dex in (33) according to the rules in Appendix C.

Mehta and Wolf*® have derived complex correla-~
tion tensors for the thermal field in a lossless cavity;
the relationship between these tensors and (42)
is established from the relation

15 C. L. Mehta and E. Wolf, Phys. Rev. 134, A1143 (1964).
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(E.r, t + DELE, )
= Re %(E,(T, ¢+ T)Eﬁ(r’7 t))d: (43)

where E, = E* + {E!, E* being the real s component
of the field used in this paper and E! its Hilbert
transform. These authors define a complex cor-
relation tensor &,,.(r, 7, 7) = (B, (r,t + 7). EX(', t))a
and describe some of its properties. They also refer
to authors who have studied correlation functions
in lossless cavities.

6. CAUSAL BEHAVIOR OF THE FIELDS;
CORRELATION

Consider the commutator ((E,(r, ©), E,.(r', )]
for two Cartesian components s and s’ of the com-
plete electric field according to (1). From (30b) we
obtain, for ¢’ > t say,

([E,(T, t)} E,:(T', tl)]>d

= —A4xih Z OnBontne ™2 [Bam 810 w07

nm

+ w"un Ccos wn{T] D n—rl:una (r)uml ’ (T') ) (44)

with B,.., @.., and D,, defined in (30¢) and 7 =
t — t' < 0. The functional dependence on the nth
mode is slowly varying except in D,, = B2, +
(@ — «2)®. Hence we can change a,, 8, and u,,
into continuous functions of a complex variable @
and evaluate the sum over n by a contour integral
in the Q-plane, according to the residues at the
poles /. =+ 8(w)). By the considerations in Ap-
pendix C we obtain

([E,(T, t); E,'(’I" t’)]>d

= —4mih Y "%l $I0 0T Uy s (). (45)

The sum is closely related to the Green’s function
in terms of lossless modes for the three-dimensional
wave equation,

V xV X Glr, t;70, 1)

+556 = wi — it — 1), )

a, being a unit vector in the s direction. G, obtained
by a procedure outlined by Morse and Feshbach®®, is

G(T, t. To, to)
to) >
= ¢ E sin w’"(t Uma(ToYttn(T) {+’ t2 by
) t < to
(47)
16 P, M. Morse and H. Feshbach, Methods of Theoretical

Physics (McGraw Hill Book Company, Inc., New York,
1953), p. 849.
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If we relabel 7, ¢, ro, and &, as ¢/, ¢, r, and {, respec-
tively, we can write (45), with 8, = 0, as

([B.(r, 1), B’ )]pm0)a

4wk £

c2 a(t )2 G (T ¢, 37 t)

(48)

Since @ represents a propagation of a disturbance
from r to v at light velocity or less, the electric
field components commute at two space-time points
outside the light cone.

One may easily verify that ((H,(r, ¢), H.. (', t')])a s
exactly equal to (48) and that the third commutator
for 8, = O is

([E,(T, t): H,'(’I" t’)]ﬂ-())d

o (49)

7. EQUIVALENT HAMILTONIANS

If no molecules or other energy sources are present
in the cavity the equation of motion (18) for P,(f)
and its mate for Q,(!) may be derived from the
equivalent Hamiltonian

Heq = E (47"62XnkP an
k,n

+ ‘é’"‘;’; YouQ.Q: + 27 P, k) + 4rc Y a,PF?
T n
(50)

by the Heisenberg prescription employing the loss-
less-cavity commutation relations [P., P.] = 0,
etc., provided the dissipation terms proportional to
B, are subsequently introduced into the equations
of motion. A dissipation term cannot appear in
(50) because it would have to be of the form 8,
>t @,@.Ps s0 as to yield the correct dissipation
term in the P, equation obtained by substituting
(22) and (23) into (19), but then an incorrect dis-
sipation term would appear in the Q. equation.

The equation (24) for B, without the terms m—
volving the other modes corresponds to Kemeny’s'®
equation of motion (5.8) for an operator ¢_(f) -+
g.(t) in his notation, ¢, being the two amplitudes of
the vector magnetic potential of one mode on the
forward and reverse time tracks, respectively, of a
closed cycle ¢, — &, — ;. Generally the equations
of motion will differ and involve different dynamical
variables, denoted by the subscripts ==, in the
forward as opposed to the backward time direction.
1(g- + q.) is sort of an average mode operator on the
forward time segment of the path. Kemeny in-
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troduced dissipation terms into the effective La-
grangian and then derived equations of motion for
¢. by employing Schwinger’s action principle, where-
by the closed-cycle action between two points ¢,
and ¢, of the path is made an extremum.

An equivalent Hamiltonian in the sense of our
paper must be used cautiously if other energy terms
appear in the original Hamiltonian because these
latter terms yield components in the equations of
motion according to the loss-averaged commutators,
not the lossless-cavity ones. What is more, these
equilibrium commutators may have values different
from the thermal ones if a perturbing Hamiltonian
causes thermal noise power to transfer between
modes of widely different resonant frequencies. This
happens in the parametric amplifier of the next
Section.

8. THERMAL NOISE OF A PARAMETRIC AMPLIFIER

First we convert the first-order differential equa-
tions for P, and @., obtained by substituting (22)
and (23) into (19) and its mate and differentiating
onge, into creation-annihilation operator form. With
the definitions

Do = @rHP,, ¢ = Q./@xc®},  (5la)
J = [@dn)F® (51b)
such that
[pn; qu] = —ih; (510)
the result is, from considerations in Appendix C,
Ijn = _w3Qn - Boan ; atpl
—_— Bo ,‘Z ai Ynkpk + (47"6)} Vl'” (5234)
#~n
Gn = Pu + and
PR > ol Xups + Vi), (520)

‘ll

Via and V,, are defined in (19). Upon defining the
creation and annihilation operators in the usual way,

al=2n+iw22u a, = n_iwnn
(2hics,,) (ko)

the commutation relations from (17), which we show
are somewhat inconsistent, are

(53)

<[am am])d = —<[a:; aaI])d
1 Banam
= ) Bottntty —So— D (54a)
([a,,, a"t]>d = —zBOanam/(wnm - zﬂnm)- (54b)
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Here the magnitude of (54a) is always far less than
that of (54b).

With these relations we introduce the simple
parametric energy term of Wagner and Hellwarth"'

char = hﬁc Z (afna;mf_iwp‘ + alna2m€iupt) (55)

where 1 denotes a mode of resonant frequency near
the signal frequency «, of interest and 2 denotes
a mode of resonant frequency near the idle fre-
quency w,. The pump frequency is w, = w; + w,.
Upon converting (52) into a, — o) form, in which
the B,-terms (representing dissipation through per-
turbation of the loss mechanism) are introduced
symmetrically, and with consistent neglect of com-
mutators of the form (54a) we obtain

—i(w/2R) oy

iwlk Yl ,nk) .

dln + %Blnaln + 'I:wlnaln =

+ E (47r62X1.nk -

k#n

. — 18,00 by i
X ay — 18, Z _M (Z azm)é st

k Wink — "’Bl.nk m

(56a)

Several B,-terms have been neglected by the ap-
proximation 8,/w, < 1. Also

. + . t .
a;n + %ﬁlnaln — /Lwlnaln = 1(&1/271«)*0!1"«]

+ Z (4‘"'02X1.nk + toy Yl.nk)

k#n
. iﬁﬂalﬂalln iwpt
,Lﬁc ; _w;.nk - ":Bl.nk (; a2M)e )
(56b)

The X- and Y-terms in (56) correspond to the
V.- and V,,-terms in (24)—(26); we shall now show
that the former terms do not contribute to com-
mutators and anticommutators of the form {[a,,(t,),
a1m(t2)]7)a, etc., with or without parametric cou-
pling. It follows that these terms will not contribute
to the spectral intensity of energy. A Laplace trans-
form of (56a) yields, for any k,

K(s)
s+ B — B)/2 + i’

where we have anticipated a self-consistent 8, > 0
term which will be proportional to 82 of the para-
metric coupling, and K turns out to be analytic.
This goes into the first summation of (56a) written as

1
Xty —

auls) = (57

18001011

Tl — 16, £ Bz )

After converting this sum into an integral in the
complex © plane, with w, changed to @ and the
denominator of (58) appearing as

[Q + i80/2 — (wh — B./2][Q — iBa — 8,)/2 — is],

(8)

’
kn Wn
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with the poles at @ = «} guaranteed by the factor
aG(R)/9Q/G(Q), G having zeros at the «f, it turns
out that after integrating over @ two of the residue
terms cancel at the pole s = —(38, — B,)/2 —
1w! in the subsequent integration over s and the
other two residue terms cancel at the pole s =
—(B» — B,)/2 — iw,. Here the approximation
w! = w, is made; presumably a more accurate
analysis would account for the higher-order dif-
ference between these two (see (30c)). As a result
the X- and Y-terms in (56) do not contribute to
an(t) and al (0), thereby justifying the first two
statements of this paragraph.

Returning now to (56) we take the Laplace trans-
form of both equations, neglecting the first sum in
each, and easily evaluate the last sums by introduc-
ing the density of modes per unit frequency interval,
¢1., in the signal frequency range. We obtain

(5 + 3Bin + 101)01a(s) = 0:1(0) — 3(w1/2h) 1, J (5)
- i‘"’ﬂcﬁlngln Z a;m(s + 7:(-0,). (59)

The corresponding equation for aI,,(s) is obtained
from this by changing 7 to —% everywhere and

@4n t0 @on. Notice that, since J (s*) = J*(s), we
have a..(s*) = [af,(s)]* and similarly for asm(s)
for any s.

If we take the Wagner-Hellwarth Eq. (13) with-
out their ¢,;, and ¢}, sums, move their f%a, term
to the right side and then sum over the idle modes
we have essentially our (59), in which a},(s + w,)
is replaced by its equivalent to (59). We now discuss
the properties of the general solution by treating
the case of one signal mode at frequency w, and
one idle mode at frequency w,, with w, = @, + w,.
The > 4., sums in (56) are noncontributory; the
second sums reduce to =1, respectively, and so a
Laplace transformation yields

a9) = o [600) = /20 )
— 5 60) + o/ 2We T + )] (608)
with
N(s) = s + 3B + twy, (60b)

D(s) = ('5' -+ %61 + iwl)N(s) — Bf,

and with a similar expression for a/(s*) obtained
from the changes a,, a., s, and 7 to aI, a,, 8% and
—1 everywhere, respectively.

From (602) and its mate the thermal energy at
signal frequency w, is obtained, for s = 7w, as
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2 et+io

X ([ai(s), aI(S*)]+>d- (61)

Routine evaluation shows this expression does reduce
to Wou(w,, 0) at ¢ = 0 and, with consistent neglect
of the {[a:(0), @,(0)].) and ([a!, ai].) anticom-
mutators, approaches as { — o«

Wiy, t = @) = hwl[ﬁl&(ﬂ + 52)]-1

X [8.(B:B: + Boymy + (28.)*Bana) (62a)

where
Bis = 3B, + B = 2((6 — B:)'/4 + B,
N,z = %—[1 _+_ e‘?(wx.a)]/[l —- E—Y(Na.l)],

n being the number of photons in the field at either
w; or w,. The commutator ([a;(8), al()aat t =
is just (62a) but without the %w;/2 and n, ., factors.

With regard to the behavior of W, and the com-
mutator during the interim 0 < ¢ < o it is not hard
to show that transient fluctuations can be con-
siderable if, for example, the decay constant B,
in the presence of parametric coupling is =20 and
the system is highly oscillatory. The mathematical
implication here that the transient fluctuations occur
even if the system starts from parametric equi-
librium must be interpreted operationally. That is,
in order to determine the initial thermal energy
in a short time we must measure the system, thereby
perturbing the initial state so that in almost all
cases the system does not start exactly from the
state of parametric equilibrium.

This simplification of the general case indicates
that the transient noise behavior of the parametric
amplifier is more complicated than first supposed,
and somewhat inconsistent, for we assumed time-
independent commutation relations (54) but derived
a time-dependent one with the equilibrium value
mentioned above. For small parametric coup-
ling we have a good first-order answer. But as a
matter of principle the transient behavior of the
parametric amplifier, as averaged over the loss
mechanism ensemble, depends on a solution to the
operator equations of motion which depend on time-
dependent commutators obtained self-consistently
from the time-dependent operators themselves. We
have not carried out such a solution even for the
above-described simple model, in which the slow
variation of the commutators could be utilized.
Saying it another way, the evolution of an am-
plifier from thermal equilibrium to parametric equi-
librium proceeds according to nonlinear differential

(62b)
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equations with time-varying commutator coeffi-
cients.

We have implied all along that the loss-averaged
system described is a statistical representation of a
sub-ensemble of ‘“global” systems, and the former
must yet be averaged over field coordinates with
respect to the field density matrix.

APPENDIX A. EXPECTATIONS OF VARIOUS
OPERATORS

We show that restoration of the loss mechanism
operators F' and 3C; to their unperturbed off- and
on-diagonal forms at the end of a short-time interval
by the appropriate IS transformation (which may
have vector nature according to the footnote 12)
causes a transformation of the density matrix such
that p; remains diagonal in loss mechanism space
and p; of field space changes only by terms guadratic
in the time.

Consider (p,04) = Tr (p,0,), ps being the global
density matrix of direct product form and @, being
an operator which is explicitly a function of loss
mechanism coordinates. Upon applying the IS trans-
formation 0 = T.0,T, T, being a function of
the field according to (15), we can write for the
global expectation after any short time interval

(pOa) = (pr X p0s) = (Tups X p"Ti0L)
= (Tdebe(P;m@;m)d-

The last equality is justified by relating the matrix
elements of pg ¢4 88

(F'd| oo 1f7d") = ('] o [f7Xd] pa |d7).  (A2)
From (Al) it follows that the loss mechanism ex-
pectation alone is

<Pg®d>d = TdeT;(P§0)®<§O)>d- (A3)

The field average in (Al) is nearly (p;) since T,
is unitary within terms quadratic in the time.

Consider now {p,0;), a global expectation of an
explicit field operator. There is no advantage in
transforming by T so we write

(0:05) = {p¢ X paOs) = {pO:)t
because of Tr (ps) = 1 and (A2) ford’ = d.
By (A2) we may verify that the global expectation
value of a mixed operator is, after an IS trans-
formation,
(pgof0d> = (pogefT:l‘Otflm
= (TdeOfT;)f(Péo)e‘gO))d- (A5)

The field average in (A5) in (p:0,); with error
quadratic in the (short) time.

(AL)

(A4)
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If molecules were present the above relations
would be valid except for (A2) because all the
elements of p, would be defined with respect to
pr X pa X pm 88

3 (md] pe \fmdy = (7| oo |7l pa 1) (A9)

in place of (A2). In addition, a new IS transforma-
tion of molecular variables by T, also a function
of the field, back to unperturbed form implies

(PO = (Tuwpr X pa X pulmOL)
= (TupTa)(pS 0 (AT)
provided
3 (mdl pe lfmd) = (] o |1"X] oo ). AS)
APPENDIX B. EVALUATION FOR TERMS OF
((P(t), Pu(t:)])a

Consider the integral

1 2 e+imo e+im ,

Il = <%) t/:—o'a ds -/;—iw ds
X =) — DE — & — o)
X A[F(s), FO6)a

in which

([F(s), FO 6

_ f "t f T dty N FO(), FOU) e (B2)

The last expectation value is given by (10) with
respect to pi”. Integration over ¢, and then ¢, of
half this commutator yields

n= [T [ dn e m o @row)
0 0

(BL)

e §

€
iw")(s' + ’iwll) +

= engy/a)me (0 — &7 [ o
1
x| 5= 6+ w)E = uo)]
(®3)

Integration of this over s’ by means of the residues
to the left of the s’ contour yields

8'ts

I, = _/;_m ds’ &= s:)(s' e L(s, 8")
= (4c*hBo/w)(dmc) 21 — &)

elmlg

il ,,[ €7 (
X2”fo W 5 \Gm — 58)m + )

amtts

e—iw”t.
+ (s — sn)(s* + ') + (" + sm)i’” + s,";))

OF STIMULATED EMISSION. II 1869
1 ( P
Tt G = 6. =)
Em?ts e"w"h )]
T E e W) T G = =)
(B4)

We now integrate this with respect to s, ignore the
small (and rapidly-varying) terms, cancel some
terms, neglect terms by the approximation 8 < «,
and take [ do’” whenever the difference (¢, — t,)
does not appear. There obtains

et i st
j:_‘m ds ————_(S — 8,6,)(8 — 8”:,) Ia(s, wl/)

= (hBo/w)dmc)*(1 — €)' (2mi)?

[ _7< ielnh+nm't.
XLE\T e r s
1 @ dw" eiw”(h-—!,) ) (2 sn*titamis
+ 57-1'—1./; (i’ — s)@” + 8%/  \ s* + 5.
ol )l e
2ri Jo (' + s¥)(iw’ — s,) '
Evaluation of I, according to the sign of &, — i,
furnishes half of I,; the other half follows readily.
When I, is used to evaluate the N“N® term of
(26) the transient portion which does not depend
on ({, — t,) cancels the N’ N‘® portion, where the
initial-value commutators {([P,(0), P.(0)])s, etec.,
have the values specified by (32); the net result is
precisely (30).
In the equation for Q,(s) from (25) F‘”(0) will
appear; integrals of the form of I, but involving

(IF®(s), F” @)Da and (F*(0), F(0)])s evaluate
to zero.

I4=

dw’’ e—iw”(h—ta)

+

APPENDIX C. EVALUATION OF SUMS OVER THE
CAVITY MODES

Consider a sum over the modes of the form

Sl = ; f(wizl)_“f(wnz (Cl)

where the numerator might represent X;, of (32),
for example, and D;, is given by (30c). S, can be
represented by a contour integral in the complex
Q plane:

1
8 = oms f@ dQ
o foy) — 10) 6@
2 — w; — 38;(D][Q — w; + 6;(D)] G(Q) ’
(C2)
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where 8;(Q) = [8; + B(Q)]/2, G(©) has poles simple
or multiple at all the @ = w,, and contour C is
shown in Fig. 1. The prime denotes d/dQ. If 1(2)—0
sufficiently rapidly for large [Q| we can continue
contour C into contour €’ and enclose the poles
labled z in the figure. Evaluation of S, by the
residues at these two poles yields

8, = _5.5.3; l:(f(w,) — flw; + 1) gﬁ

witiBii

wy-iﬂn] (03)

where 8;; = ;. Upon expanding the terms about

w; we get
_ i@’_’]
8, = [asz ¢ 1.

F1a. 1. Distribution of
cavity mode resonant fre-
quencies in the complex Q
plane. Integration around
} contour C' is extended to
/ integration around C 4+ C’
-~ and evaluation made in

terms of residues at w; =

185

— () ~ s — i8:) &

(02D

R. M. BEVENSEE

Here
GII
@ .,
- 2( + Mi—y + My + > , (C5)
W; — Wi Wi T Wiy

m; being the multiplicity of modes at w;. We assume
that the distribution of mode resonant frequencies
is quite homogeneous so that G’//G’ =2 0 and hence
that 8, = 0.

Now consider the other type of sum,

S, = zﬁ:ﬁ‘&%&(ﬁ’ﬁ , (C6)

where the numerator might represent Y, of (32),
for example. Evaluation of this by a contour inte-
gration yields

L df

18;; 99,
The first term is just the n = j term in (C6). It is
reasonable to define £,(2) to be an impulsive func-

tion which is even about each w,, in which case the
second term in (C7) is zero.

8 = 2f.(w,)/B% + (&)
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A new formalism for dealing with Cartesian tensor analysis in flat spaces with an indefinite metric
with the same ease as in Euclidean spaces is introduced. It avoids the necessity of distinguishing
covariant and contravariant indices and the consequent use of the metric tensor in raising and lowering
indices; neither does it require the introduction of imaginary coordinates and components of tensors.
It is based on the use of a modified Einstein summation convention combined with a modified dif-
ferentiation with respect to tensor components in such a way that all formal manipulations are es-
sentially identical with those employed in Cartesian {ensor analysis in Euclidean spaces. The further
introduction of a modified matrix multiplication and a modified definition of a determinant serves to
round out the formal analogy with the Euclidean space. The convenience, simplicity, and typo-
graphical economy of the new formalism is illustrated by examples drawn from special relativity. The
formalism can be trivially generalized to complex linear vector spaces with an indefinite metric.

INTRODUCTION

ARTESIAN tensor analysis in Euclidean spaces
is particularly simple since it is unnecessary to
distinguish between covariant and contravariant in-
dices. In a flat space with an indefinite metrie,
like the Minkowski space of special relativity, the
difference between covariant and contravariant com-
ponents of a vector (in a ‘“Cartesian’’ coordinate
system) involves only differences in sign between
some of the components, with associated sign dif-
ferences for components of higher rank tensors.
To keep account of these sign changes one can
employ the usual apparatus of general tensor analysis
with upper and lower indices distinguishing contra-
variance and covariance, respectively, and the metric
tensor as the medium for raising or lowering indices
as necessary. While this is simple in concept it is
cumbersome in practice and seems an unnecessarily
complicated procedure for doing the required “book-
keeping” on plus and minus signs.

One way of restoring the simplicity of Euclidean
space to spaces with indefinite metrics is to introduce
imaginary components. The distinction between co-
variant and contravariant indices then disappears
but at the price of dealing with tensors with both
real and imaginary components. This also has its
annoyances, particularly in quantum mechanics
where complex conjugations are frequently neces-
sary, and one must keep in mind which symbols
represent real and which imaginary quantities.

I have recently discovered that there exists a
simple way of dealing with flat spaces with an in-
definite metric with the same ease as in the case of

* This work was supported in part by the U. S. Atomic
Energy Commission.

Euclidean space and without the intervention o
imaginary quantities." No care need be exercised
with respect to the distinction between covariant
and contravariant components—one uses one set
in a consistent way. Furthermore all manipulations
are formally the same as in Cartesian tensor analysis
in a Euclidean space, and only the final evaluation
of expressions is made according to (slightly) mod-
ified rules.

The new scheme rests on two simple modifications
of the usual operations of Cartesian tensor analysis:

(i) A modification of the Einstein summation
convention for repeated (dummy) indices.

(ii) A modification of the usual partial differentia-
tion with respect to components of a vector or tensor,
which in combination with the modified summation
convention satisfies all the formal manipulative
properties of ordinary partial differentiation.

In conjunction with the above it proves convenient
to introduce also matrices and determinants mod-
ified to “mesh” with the above changes. We refer
to these modified operations and quantities as M-
summation, M-differentiation, M-matrices, and M-
determinants, respectively, where the “M” may

1T have been able to trace the basic idea involved in this
formalism to the notation introduced by Feynman [R. P.
Feynman, Phys. Rev. 76, 749 (1949), Sec. 3.] and the whole
formalism can be considered to be a simple and natural ex-
tension of Feynman’s notational devices. It is not unlikely
that an identical or similar formalism has been published
greviously and was not revealed in what must of necessity
e a relatively superficial literature search; nor were any of
the author’s colleagues who were queried on this question
aware of the possibility of the generalization here presented.
In the event that an exposition of this formalism does exist
elsewhere, I apologize to its author (or authors) for this over-
sight and hope that the present publication may serve to
bring it into wider acquaintanceship among physicists and
mathematicians who may find it useful.
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be considered to stand for “metric”’ or “modified”
as desired.

We emphasize that there is nothing profound or
mathematically novel in the formalism we describe.
We justify its publication purely on the grounds
that it is convenient for both computational and
didactic purposes and has typographical advantages.
We shall present our formalism in rather general
form though we have in mind primarily its applica-
tion to special relativity. We limit our discussion to
real spaces, but there appears to be no problem about
enlarging its scope to complex linear vector spaces
with an indefinite metric.

CONVENTIONS AND DEFINITIONS

We consider a real linear vector space with n
dimensions. A point in the space referred to a
particular Cartesian coordinate system is designated
z==z,(u=1,2, -+ n). The metric tensor is then
diagonal: g,, = 0 for 4 # », and its diagonal elements
are either +1 or —1:¢,, = g, for p = » with g, =
1. In Minkowski space, which we shall sometimes
use for examples, we shall take® g, = g, = ¢; =
—g. = 1,

Modified Summation Convention (M-summation)

A repeated Greek index is to be summed over
all values 1, 2, --- , n, with a coefficient for each
term which is +1 or —1 according as the correspond-
ing g, is +1 or —1.

As examples for the Minkowski space, we quote

ab, = a,by + azb; + asb; —

a,by = G1byy + Gbia + Gi3bis — ay4by
+ @a1bay + G23ban + Azsbas — @20bss
F @1bs1 - @Bazbss T+ @aabss — @a4bss

— Guby — Gubie — Gugbis + Gagbug.

b,

We shall sometimes write a-b for a,b, and a® for

a-a = aq,q,.
It follows from our convention on summation
that
guly = Qy,
gnvaubv = aubn = a-b, (1)
guwlor = Guvs

so that g,, behaves under M-summation as the

2 Somewhat later we go over to the currently more popular
convention of designating the time coordinate by =z, with
the metric: go = —g1 = —¢; = —g; = 1.
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Kronecker symbol é,, does under the ordinary sum-
mation, that is, as an “identity”’.

M-differentiation

We use the usual symbol 9/8a, to represent
ordinary partial differentiation, but we now in-
troduce a modified differentiation, M-differentiation.
Let ¢(a) be a function of the ‘“vector” a,. We define

aMd’/ da, = 5,"«(64)/ 6a,), (2)

where the M-summation convention is to be em-
ployed on the repeated index on the right. Here
8, is the ordinary Kronecker symbol defined by

5, = {1 for p=v=1,2 «--n,
0 otherwise.

This means

9¢/da, i g.=

—a¢/da, if g,

More generally, if we have a function ¢ of a “tensor”
t,» * -+, we define the M-derivative by

0ud/Otuyere = 8,00,8 =+ - (30/0tap...). (@)

With the M-derivative, the usual rules apply for
differentiating sums and products. Furthermore, and
this has motivated its definition,

¢(a + da) = ¢(a) + [aM¢(a)/ da,} da,, (5)
ot + dt) = ¢(t) + [9a0(t)/0tss...] dbyyene,  (6)

and also, if ¢ is a function of a vector b which in
turn is a function of a vector a, then

0up/0a, = (9/0b,)(3xb./0a,). ™

These formulas illustrate the neat ‘‘meshing” of
M-summation with M-differentiation to yield re-
sults which are formally identical with the cor-
responding formulas in Euclidean spaces. One has
also the particular relations

aM(avbv)/aan = b,
dx(a®)/da, = 2a,,

dud/0a, = {
-1.

dxa,/da, = g,

of which the last again exhibits tbe close kinship of
the metric tensor in the present formalism with
the Kronecker symbol of the conventional formalism.

TRANSFORMATION OF COORDINATES

We consider now the transformation from one
set of “Cartesian’’ axes in which the coordinates of
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a point are * = z, to another in which the co-
ordinates of the same point are 2’ = z/. Such a trans-
formation is a linear transformation

CC," = A,Z,, (8)

(M-summation implied on the right!) satisfying
the condition

\ .
' = zlxl = A,Azx, = 2,2, = 2.

This defines a rotation of axes and requires the
coeflicients to satisfy the condition

Aphic = Goay (9)
or, defining
AL, = A,,
A:uAuc = Gye = AmA:v'

10)

(The interpretation of this last equation as a “ma-
trix” equation will be taken up in the following
section.) It follows from these results that

z, = ziA,, = Az, 11)
and
3%k = A = A, (12)
9z, = Ay, = A,y
where we have abbreviated
3, = dy/0z,, 3% = 8, /0z).

It should be noted that the identity transformation
is represented by A,, = g,,:

x"' = Guly = Ty

An infinitesimal transformation (rotation) then has
the form

Ay = g + e\, (13)

where ¢ is an infinitesimal and condition (9) implies

that \,, is antisymmetric on its indices:
Mu = =Xy = =M.

(14)

In the special case of Minkowski space, the various
inversion transformations are represented by

A,, = =38, (space inversion),
A, =4, (time inversion), (15)
A,, = —g., (space—time inversion).

If under a change of axes (reference frame) a set
of quantities a, transforms according to

a",, = Auva!,
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we define it to be a vector; more generally a tensor
transforms as

t,’.,... = A“,,A,.p e taﬂ..., (16)

while a scalar ¢ is left invariant. In particular, let
¢(z) be a scalar function of position so that ¢'(z") =
¢(x); then one readily verifies that d.0(z) is a
vector,® i.e.

9,9'(z") = Au0.(x). a7

That g,,, the metric tensor, is indeed a tensor with
the same components in all frames follows from

Gir = Aiahipgap = Apebsa = G-
M-MATRICES AND M-DETERMINANTS

We have noted above that Eq. (10) expressing
the condition for a rotation of reference frame is
similar to a matrix equation; the difference is only
that the sum on the repeated index is an M-sum-
mation rather than an ordinary summation. It is
therefore convenient to define M-matrices (that is,
arrays) whose row-by-column multiplication is car-
ried out by M-summation instead of ordinary sum-
mation. The unit M-matrix will in this case be
represented by the metric tensor g,,. Successive
rotations of reference frame will be associated with
M-matrix multiplication of the associated M- ma-
trices for the individual rotations. Equation (10)
agsserts that A,, is an orthogonal M-matrix while
the totality of orthogonal M-matrices will constitute
an M-matriz representation of the group of rotations
in the space. The generators of infinitesimal rota-
tions, —7\,,, are then Hermitian M-matrices.

If we were to write out the unit M-matrix as an
array we would note that its ordinary determinant
would not necessarily be 4-1; in fact for the Minkow-
ski space, in particular, it would be —1. Hence,
the familiar rule that the determinant of a product
of matrices is the product of the determinants of
the factors would not be valid. To rectify this it
is convenient to introduce an M-determinant of an
M-matrix such that this rule is regained. This is
most simply accomplished by defining the M-deter-
minant of an M-matrix as the product of its ordinary
determinant with the ordinary determinant of the
unit M-matrix. Thus, if we designate the ordinary
determinant of a square array A4,, by A(d,) and
its M-determinant by A,(4,,), then*

3 More generally, the M-derivative of a tensor yields a
tensor of rank increased by unity.

4 One finds readily that Ap{(38,,) = A(g,,), each being
plus or minus one according as the number of negative g,
18 even or odd.
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Ay(4,) = Algu)A(4,). (18)

In the following section we shall consider the Levi—
Civita symbol e,,, -+ in our formalism. One can
then easily show that the M-determinant of an
M-matrix A,, can be defined with its use by the
same formula as the ordinary determinant is defined
in the conventional formalism:

AM(A“,) = 6“,¢...A|‘IA2,A3, Ctt (19)

where M-summation is now to be used on the re-
peated indices on the right.

With the above definition of the M-determinant,
all restricted (i.e., proper, orthochronous) Lorentz
transformations in Minkowski space have M-deter-

minants equal to 41 with A, > -+1; improper,

antichronous transformations have M-determinant
+1 but A,, £ —1; improper, orthochronous and
proper, antichronous transformations have M-deter-
minant —1 and Ay > 1 and A, < —1, respec-
tively.

We remark finally that the solution of a set of
linear equations of the form

(20)

with M-summation implied on the left, can be
expressed in the familiar determinantal form, that
is, z, is the usual ratio of two determinants (either
both ordinary or both M-determinants) but multi-
plied by 1 or —1 according as g, is plus or minus
one.’ If the equations are homogeneous, that is,
the y, are all zero, then the condition for a non-
trivial solution of the equations is that A, (4,,) = 0,
or equivalently, A(4,,) = 0.

There is one point in which a little care is required
in dealing with M-determinants. The usual defi-
nition of the cofactor of an element 4,, of a deter-
minant involves striking out the row and column
in which 4,, occurs; this leaves one unclear as to
how to evaluate the resultant determinant, which
has n — 1 rows and columns, in our formalism. A
better rule for constructing the cofactor is the
following: The cofactor a,, of an element A,, of a
determinant is obtained by replacing all elements
in the pth row and »th column by zeros except for
the element A4,, itself which is replaced by unity.
This is equivalent to the ordinary rule for ordinary
determinants but works equally well for M-deter-
minants. One then has as usual

Auvamt = guwAM(Aur)7

5 This follows immediately on noting that Eq. (20) is
equivalent to the same set of equations with ordinary sum-
mation on the left if each x, for which g, = —1 is replaced
by its negative.

war = Yus

LESLIE L. FOLDY

which allows one to define the reciprocal matrix
A;} to the matrix 4,, as

A;vl = avu/AM(Anv)> (21)
(assuming A, (4,,) # 0) with the property
AA,. = ALA%, = g 22)

THE LEVI-CIVITA SYMBOL

In view of its prominent role in relativity and
in other situations, it is now necessary to determine
whether any modification of the Levi-Civita symbol
is required to bring it into consistency with our
formalism employing M-summation. One finds that
the usual definition

+1if yv -+ - is an even permutation
of 12 ... n,
€u... = 17— 1 1if gv -+ is an odd permutation (23)
of 12 -+ n,

0 otherwise,

suffices; it would be very awkward for us if it did
not since its usefulness hinges on its being com-
pletely antisymmetric on its indices. One can es-
tablish its consistency with our definition of the M-
determinant as exemplified in Eq. (19). Further-
more, considered as a symbol with the same com-
ponents in every reference frame it transforms as a
relative tensor (or tensor density) under coordinate
transformations:

24

6"“,... = AM(A“,,)E",... .

In the particular instance of Minkowski space
it therefore transforms as a tensor under restricted
Lorentz transformations, and hence, can be used
to form pseudoscalars and pseudovectors from com-
pletely antisymmetric tensors of the fourth and
third rank, respectively, just as in the conventional
formalism.

One important caution with respect to its use
must be noted, however, which is a consequence of
the fact that it is not a true tensor. Some of the
familiar identities which it satisfies in a strict Eucli-
dean geometry are valid only in a slightly modified
form. We quote here the correct form of three of
these identities from which the character of the
others is readily inferred:

= n! Ay(du),

= (0 — D! 4x(30)gs, (25)
(= 2)! Au(8,)[gargss — Gasger]-
It will be noted that these reduce to the familiar

€pvaer€upgens
€appers€8upere

€aBuver €qdupere =
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identities for Euclidean space where A, (5,,) = 1
and g,, = &,,.

We shall terminate our discussion of the M-sum-
mation formalism at this point. There are other
matters worthy of investigation, integral theorems,
for example, but by this point it should be clear
that the formalism is a coherent one and further
elaboration would only consist in paralleling the
conventional treatment in the new notation.

EXAMPLES

We shall conclude our exposition of the M-sum-
mation formalism by illustrating its application to
two familiar situations in special relativity, the
vector meson (Proca—Maxwell) field and the Dirac
equation, in order to demonstrate its basic simplicity
and typographic economy® over the usual tensor
formalism. In this section we depart from our pre-
vious notation for Minkowski space and adhere
instead to the current preference of using z, to
represent the time coordinate: z, = (o, Z;, %2, 23) =
(¢, x); also we take the metric tensor to have diagonal
elements: g, = —¢, = —¢g, = —gs = 1. Thus,

2 2 2 2 2
T =T, =T — T — Tz — 3.

Proca-Mazxwell Field

‘We shall use this case as an example of the deriva-
tion of field equations from a Lagrangian. We write
the four-vector potential as A, = (¢, A) where ¢
is the usual scalar potential and A the usual vector
potential. The field tensor F,, is then given by

F,=0A4,—9A,, (26)
with 8, representing M-differentiation; thus,
E= —grad¢ — 0A/3¢ = (Fo1, Fos, Fos), @7

B = curlA = (an’ Fal; F12);

and F,, is antisymmetric on its indices. We shall

derive the field equations in the presence of an ex-

ternal four-vector current source j, = (p, j) where

p is the charge density and j the current density.
The appropriate Lagrangian density is then

JE — BY) + 16— A + A — o,
= '—%F“,F” + %KzAnAu - juA#'

£ (28)

The usual variation of the action expressed in terms
of M-derivatives and with the M-summation con-

¢ Even greater typographical economy could be achieved
in what follows by using the familiar “comma notation” to
represent an M-derivative, e.g., dyd, /2, = A,,,.
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vention is then
8 f d'z8 = f d'z{[0.,£/04,] 84,
+ [02:£/3(3,4,)]5(3,4,)},
= [ a'ziioue/o4,)

— av[aMﬂc/a(avAu)]} 6AM

(29)

whose vanishing yields the Euler-Lagrange equa-
tions:

3M£/8A,, - a,,[aMoB/a(a,.A,,)] = O- (30)
With
— 2 —_—a
a1'!1°B/614» =K Au Jus (31)
6M£/a(a,Au) = _va;

this becomes

avF’w + KzAu = ju: (32)
or

. 2,
divE 4 «'¢ = p, 33)

curl B — 9E/9t + «*A = j.

To obtain the canonical energy—momentum den-
sity tensor TZ, in the absence of sources, j,=0, we
write the condltlon that the Lagrangian density in-
involves space-time coordinates only implicitly
through the fields by
9,8 — [0uL/0A,] 3,4,

— [9x£/0(0,4)] 3, 9,A, = 0. (34)

Using the Euler-Lagrange equations this may be
rewritten as
8,T., = 0. (35)
with
T = [04£/8(3,4.)] 3.4: — gud.

The symmetrjc energy—-momentum density tensor
is obtained from this by adding the tensor

TL{- = a«r(FnAn)J

(36)

@37

whose divergence, 9,7, vanishes identically be-
cause of the antisymmetry of F,,. Straightforward
calculation using the field Eqs. (32) with j, = 0
and (31) then yields

Tuv = T‘,u + T;: = —Fcp,Fvv

+ KzAuAy + %gyr[%FaﬂFaﬁ - KzAaAa]' (38)
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In the presence of conserved currents
3,4, = 9p/at + divj = 0, (39)

so that 9,4, = 0, one finds that, with T, given
by (38),

3,1, = (40)

uvj pe
The Dirac Equation

Our discussion of the Dirac equation in the M-
summation formalism will be limited to the state-
ment of some of the pertinent relations and the
proof of its covariance. We shall suppress all spinor
indices.”

We first write the Dirac equation in its familiar
noncovariant form:

10¢/at = (Bm — ie-V)y. 41
If we multiply the equation by —%8 and let
v = (8, Be), (42)

it can be rewritten in the M-summation formalism
as

Y. 0¥+ tm ¢ =0, (43)
The v, satisfy the anticommutation relations
Yi¥s T VY = 2gnv- (44)

Of these matrices, v, is Hermitian and v, v., vs
are anti-Hermitian; thus

Ve =TV = Su7se (45)
The adjoint spinor is defined as usual by
¥ = ¥". (46)

We now consider the covariance of the equation

under Lorentz transformations,
T, = Az,

#7)

assuming the Dirac wavefunction to transform locally
as usual:

V@) = S(A)¥GE), - 48)
¥@) = ST (AW E). (49)

7 Spinor indices, if explicitly included, would be summed
according to the usual convention, not by an M-summation.
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Then
3,(x) = 87 (@) aux)
= A,, S alY/ (). (50)

Substituting (49) and (50) into (43) and multiply-
ing by S, one obtains as the condition for covariance

S(A)'YuS—I(A) = Anv’Yv- (51)
Under an infinitesimal Lorentz transformation

Ay = G + €My

with
S(4) = 1 4 (), (52)
one easily shows that
TN = evovn (53)

yields a solution of (51). For the space-inversion
transformation where A,, = §,,, Eq. (51) takes the
form

.87 = 8.v., (54)
which by virtue of (45) is satisfied by S = v, = S7*.
CONCLUSION

We believe that we have demonstrated the utility
and convenience of the M-summation formalism
in dealing with Cartesian tensor analysis in spaces
with an indefinite metric. The use of lower indices
only not only increases the transparency of many
relations, but when dealing with nonsymmetric
tensors avoids the need for careful positioning of
superscripts and subscripts. The formalism has an
advantage over the use of imaginary coordinates
in that one need not keep track of the real or im-
aginary character of vector and tensor components.
While facility in the use of M-summation and M-
differentiation requires a little practice, it appears
to the author to be well repaid in the convenience
of calculation in this formalism.
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It is shown by a perturbation diagram method that partial Green’s functions satisfy closed evolution
equations exact in the thermodynamic limit except for the neglect of the contribution of initial par-
ticle correlations. This contribution is negligible for a system at a time ¢ >> 7. (average collision dura-
tion) when the main interaction processes are localized in space and time. In particular this makes
unnecessary the often imposed assumption of the absence of initial particle correlations for the deri-
vation of the usual Boltzmann equation or its generalizations.

1. INTRODUCTION

N an earlier paper' the author demonstrated that
for a quantum imperfect gas of distinguishable

particles a closed evolution equation for the one-
body density matrix or Wigner’s distribution func-
tion can be obtained when the contribution arising
from the initial particle correlations is negligible.
The present article deals with a quantum gas of
indistinguishable particles.

The essential difference between the classical- and
quantum-statistical systems lies in the symmetry
property of a many-body state under the permuta-
tion of particle indices. Thus, a quantum statistical
interaction process is a process in which particles
participate not only with their intermolecular poten-
tials but also with the principle of indistinguisha-
bility (Pauli’s exclusion principle for fermions). The
symmetry property of a many-body state may be
most simply taken into account by means of second
quantization operators. The momentum-space an-
nihilation and creation operators are introduced in
the text though the theory could be developed es-
sentially independent of the momentum representa-
tion.

It is found that partial Green’s functions ¢~ and
g<, satisfy simultaneous equations exact in the ther-
modynamic limit, Kadanoff-Baym’s equations® sup-
plemented by the terms typical of representing
contributions arising from the initial particle cor-
relations. It is found that (1) the contribution of the
initial particle correlations should die out in a time
of the order of the average collision duration r,, and
that (2) for a system at a time ¢ > r,, the fore-
mentioned equations should reduce to closed equa-
tions for ¢> and ¢, and thus give a good starting
point for the discussion of various problems. The

* On Leave from I'Universite Libre de Bruxelles, Brussels,
Belgium.

1’8, Fujita, J. Math. Phys. (N. Y.) 6, 1004 (1965).

2L. P. Kadanoff and G. Baym, Quantum Statistical
Mechanics (W. A. Benjamin, Inc., New York, 1962).

finding (1) implies in particular that the assumption
of the absence of initial particle correlations® (or
the factorizability of the initial density into one-
body densities*) is not required for the derivation
of the usual Boltzmann equation and its generaliza-
tions. This point was previously argued by Prigogine
and his collaborators*™® from the study of the N-
body distribution funetion.

In the Appendix, M. Fitelson, A. St. Pierre, and
the present author discuss the effect of initial particle
correlations.

2. ONE-BODY DENSITY MATRIX AND ITS
MECHANICAL EVOLUTION

Let us consider an imperfect gas characterized
by the Hamiltonian’

H= Zh‘(’i) + A Zv(ii)
i >4

2.1)

0 f f f f v(12, 34)afa;a4aa,
Pr YPa YDa YDPe

v(12, 34) = [v(, — ps) &= v(p1 — P)]

+
= f €a,0, +
) 21

X 5(:)(1’1 +p.— D — p4), (2.2)
3
.[E’(_z’;';)'z—)fds, as Q— o,
’ ? (2.3)
33 () = (2‘;)3 55— 57@), as 2 o,

where the conventional notations are used: the
second quantization operators {a), a,} satisfy the
commutation or anticommutation rules according
to whether the particles are bosons or fermions; the

$ H. Frohlich and A. W. B. Taylor, Proc. Phys. Soc.
(London) A83, 739 (1964).

+1. Prigogine, Non-Equilibrium Statistical Mechawics
(Interscience Publishers, Inc., New York, 1962).

& R. Brout, Physica 22, 509 (1956); R. Brout and I.
Prigogine, Physica 22, 621 (1956).

¢ P, Résibois, Physica 27, 541 (1961).

7 The following notations are due to Hugenholtz, N. M.
Hugenholtz, The Many-Body Problem, edited by Dunod
(Dunod Cie., Paris, 1959), p. 1.

1877



1878

upper signs are for bosons and the lower signs for
fermions.
The momentum density matrix is defined by

n@es ) = ZL T (a0}, @)
Ay = a;a,, (2.5)

where p(t) is the density operator satisfying the
Liouville equation

i 5l p0) In) = 3 Lnl H )| o9 )

=l o)) Yo' | H [n'}],

[n) = |nmang «- ).

2.6)
@2.7)

Following Prigogine and Résibois®*® we may in-
troduce a new specification of n—n’ matrix elements
of an operator A by

’-—’—2'“2—”) 2.8)

ol 4 ) = Auca

If one defines a set of numbers (N, v) such that

n—n =y, in+n)=N 2.9
then (2.8) is equivalent to
N+ 3] AN — 3y = A,N). 2.10)
In this specification one can write (2.6) as
. 8
1 5’; Pr(N: t) = Z (VI GC(N) Iy’)p,,(N, t); (211)

where (»[3¢(N)|+') is defined by
Gl W) ) =v""H,., W)™ — 0" H,,.(N)7’,

2.12)

with "’ denoting a displacement operator such that

1" f(N) = fN; = dvin™” (2.13)

for a function f of N;.
Direct calculation yields that

(”& 3Co(N) I"’) = 72 €v; 8u0

[ S L eroason

8 1. Prigogine and P. Résibois, Superfluidité et équation
de transport quantique (Inst. interuniversitaire Se.” Nuel.
Belg., Brussels, 1960).
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clomy by = [ [ [ [ 0280 8.0

X 61:,'.”—1 5:,'.v;+l 6h’.h+l I-I5 6:,".”! (2'14)
iz
o(12, 84)

4
= v(lz’ 34){n+v"+».r+n'+u' H 51\3’},;’?—"—“_"“"
k=1

4
Bl & et 2 Mt T et P4 pitrgbrabrg
-7 ” 61\7.}’7 .

kel

(2.15)

Here we see that the elements (v|3C|»") and (»[V}¥)
are subject to the same sort of selection rules as
{n| Hy [n') and {n| V |n’) are, i.e. 3¢, is diagonal and
U has nontrivial elements between those v and »'
which can be reached by the transposition of two
particles,

Using (2.4), (2.11), and (2.14) one finds that

)

(2.16)

[‘g“t + e — 51)]”"(})1?2’ )= —
0 3, 8,0,

If it is so desired, the term on the right-hand
gide can be expressed in terms of an integral of the
produet of the potential and two-body density
matrix (Bogoliubov—-Born-Green—Kirkwood-Yvon
equation®). Therefore, the mechanical evolution
equation is nof a closed equation for the one-body
density matrix n(p,p,, t). This situation is the same
a8 in the case of classical statistics. In this case it was
shown that the forementioned integral can be ex-
pressed in terms of one-body density matrix in the
thermodynamic limit if the effect of initial particle
correlation is negligible. Does a similar simplification
occur in the quantum statistical case? This question
is examined in the following sections.

3. DIAGRAM ANALYSIS IN ONE-RESOLVENT
FORMALISM

From (2.5) and (2.10)
a(N) = (N + 3| az0, [N — %)

=[N+ HO: — DI 801 b0 I;Is 8yp0-  GB1)

¢J. Yvon, La théorie statistique des fluides et I’ éguation
d’¢tal (Hermann & Cie., Paris, 1935); N. Bogoliubov, Problems
Dynamitchesky Theorie v étatwtztckeskey Phisike (OGIS,
Moscow, 1946) [English transl., Studies in Statistical Mechan~
w.s, edztedb J. de Boer and G, E. Uhlenbeck (North-Holla,nd

Cpany, Amsterdam, 1962), Vol. 1, p. 1]; J. G

Klrkwood hem. Phys. 14, 180 (1946); 15 72 (1947),
M. Born and H. S. Green, 4 General Kinetic Theory of Fluids
(Cambridge University Press, Cambridge, England, 1949).
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2

=

Fia. 1. An N — » diagram representing a state in ».

Following Résibois® we may represent the state
v={-1,1,0,0 - - -} by the diagram shown in Fig. 1,
where the horizontal particle line with p, running
to the right represents », = —1 and the line with
p; running to the left », = 1. This diagram rep-
resentation may be generalized to an arbitrary state
v by drawing several directed particle lines.

In (2.14) we see that the perturbation U brings
out a change in four momentum states. We may
represent (0/Uy,5/—1, —1, 1, 1, 0, 0, ---) and
(1,0,0-+« 015,840, —1,1, 1,0, 0, ---) by the dia-
grams a and b, respectively, in Fig. 2.

We may expand ¢*** in the perturbation series:

e—ﬂcl = e—:‘.‘!ﬁ.t[l + i (—i)\)kf dTl

X fo dry -+ fo N ()0 .-.v(n):l, 3.2)

.U(T) = e+m.r,oe—m.r

= [ [ [ [ wazsgecreeor @3
P1 YPs YD1 vYpe

We wish to represent by diagrams the perturba-
tion expansion of the density matrix

n(plpz) t)
- @_SZNE e 6] 0 oV, 0). (B

Components p,(N, 0) with nonzero » describe
particle correlations due to interparticle potential
and hydrodynamic inhomogeneities. They may be
represented by a horizontal broken line with inter-
action vertices and inhomogeneity marks X. It is
seen from (2.2) that the sum of the momenta of the

0 1B{1234)

f) (b}

Fi1g. 2. The diagram (a) represents the transition from
-1,-1,1,1.0,0, .. ) to (0, 0, .. ) due to Dis, 34, while the
iagram (b) represents the transition from (0, —1, 1, 1, 0,

0,...)t0 (1, 0,0, ...).
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incoming particle lines at a vertex should be equal
to the sum of the momenta of the outgoing lines.
In contrast the algebraic sum of the momenta of an
incoming and an outgoing line at an inhomogeneity
mark X is not zero.

Some typical diagrams are drawn in Fig. 3, where
we leave out momentum values except for those
having the fixed momenta p, and p,. By such an
(partially) unlabeled diagram we may imply a col-
lection of momentum-labeled diagrams of the same
diagrammatic structure.

A diagram is said to be connected if any two points
on it can be reached from one to the other without
leaving it. Otherwise, the diagram will be called
disconnected. For example, the diagram (a) in Fig. 3
is connected while the diagram (b) is disconnected.

e

(") M H

Fig. 3. Diagrams representing components of the density
matrix in (3.4). A connected diagram (a) and a disconnected
diagram (b) which contains vertices of the type M. A proper
diagram (c).

Certain diagrams have an interaction vertex of
the type M like those two in (b) which have all the
incoming and outgoing lines on their right. Such
diagrams contribute nothing as in the case of clas-
sical statistics. This, in the quantum statistical case,
is known as the theorem on left-multidentate struc-
tures. '’

As all the disconnected diagrams have M-type
interaction vertices, we have only to deal with con-
nected diagrams containing the lines with p, and p,.

We may analyze these diagrams in the following
manner:

A linked diagram may or may not consist of two
parts which can be separated out by cutting a pair
of unlabeled particle lines. In the first case we shall
say that it is an émproper diagram; and in the latter
case it is proper. For example, the diagram (a) in Fig.
3 is improper and the diagram (c) proper. A part
which is suspended by such a pair of lines will be
called a self-energy part, following the terminology
used in the quantum field theory. We shall further
say that we reduce an improper diagram into a sim-

10 8 Fujita, J. Math. Phys. 3, 1246 (1962).
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pler one when we replace with a single line a pair of
lines suspending a self-energy part. If we repeatedly
make such reduction for an arbitrary improper dia-
gram, we shall finally come down to a proper dia-
gram. In the present case of diagrams representing
the density matrix in (3.4), all the improper diagrams
are reducible to the only proper diagram (c¢) in
Fig. 3.

We can extend our diagram representation to
the term on the right-hand side of (2.16). Some
typical diagrams are drawn in Fig. 4, where the
vertex at ¢t (time) = ¢ is shown by a vertical dotted
line. The improper diagram a is reducible to the
proper diagram b.

It is now verified that any proper diagram con-
sists of the two particle lines with the fixed momenta
p. and p, and a proper self-energy part. The diagram
¢ is the simplest proper diagram.

Thus far we could proceed in a line similar to that
of the classical statistical case. Now we shall discuss
an important characteristic of the quantum statis-
tical diagrams.

A proper diagram is composed of several particle
lines running between vertices. Such a line may be
classified according to whether it runs from a vertex
to the same or between two vertices. In the first case
the line can be dressed with self-energy parts and
inhomogeneity marks in the same way as for the
only proper diagram (line) in Fig. 3 (c¢) representing
a density matrix. For a line of the second type a
similar dressing is possible but the line runs between
two vertices of different times. This makes it impos-
sible to express a dressed line of the second type
simply in terms of a density matrix.

It is seen that except for the simplest proper dia-
gram c¢ in Fig. 4 every proper diagram contains
lines of the second type. This implies eventually
that within the present diagram analysis we may
not obtain a closed evolution equation for the density
matrix even if the contribution of the initial particle

' I

! 2, | i

| SN |

11 : [ !

| e i
() (b)

! F1a. 4. Diagrams representing components
| of the term on the right-hand side of (2.16).

>© The improper diagram a is reducible to the
! proper diagram (b). The simplest proper
H diagram (c).
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correlations are omitted. However, it is possible to
derive a closed set of equations for partial Green’s
functions as was first conceived by Kadanoff and
Baym. This will be indicated in the next section.

4. EVOLUTION EQUATIONS FOR PARTIAL
GREEN’S FUNCTION

Partial Green’s functions are defined by
9", 2) = g @ity Pala)
. (2r)
= —i &l ('@,
4.1)

5,9 = % ZL 1 (o' @attre),

where a(1) and af(2) are annihilation and creation
operators in the Heisenberg picture:

a(l) = U't)a, U,

4.2)
a'(l) = U'(t)e, U).
The evolution operator U(t) is defined by
1(8/a)U() = HHU®) = [H, + A\V®OIU®), .3)
‘Li‘nio U(t,, to) = l.i_I.f,l U@ =1, 4.4)

with the initial time ¢, being chosen to be zero for
simplicity.

In the present case of the time-independent
Hamiltonian H in (2.1), the evolution operator U(t)

can be written as
U(t) = ¢ 7. (4.5)

The function ¢= is related to the momentum den-
sity matrix in (2.4) by

lim =+ 4g%(1, 2) = n(t).-

ta—iy

(4.6)

The mechanical evolution equations for g~ and
g° can be derived from the Heisenberg equation of
motion for a(1) and af(2). In the presence of pairwise
interactions these equations are hierachy equations
of the lowest order similar to the Bogoliubov—Born—
Green~Kirkwood-Yvon equations. Kadanoff and
Baym argued that under certain conditions these
equations can be, in the thermodynamic limit, trans-
formed into closed equations for g~ and ¢g<-* In an
earlier paper the present author investigated the
underlying conditions by means of a perturbation
theory.'' Here a system of noninteracting electrons
in an impurity field is treated with the initial con-

i 8, Fujita, Physica 30, 848 (1964).
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dition of no particle correlations and no spatial
inhomogeneities. The adaptation of this perturbation
theory to an imperfect gas is immediate. The in-
clusion of the initial particle correlations and in-
homogeneities will introduce the same modifications
as those discussed in the preceding section.

In the following we shall briefly outline the deriva-
tion of the corrected Kadanoff-Baym equations as
the arguments proceed similarly to those in Ref. 11.

As ¢° contains three evolution operators {(exp
(it.H), exp [—i(t, — t,)H], exp (—t,H)} the tech-
nique of N — » representation in Sec. 3 does not
help very much. We may analyze the perturbation
expansion of g< in the ordinary n-space (momentum
occupation number space).

The three evolution operators may be expanded
in perturbation series with the use of

e—s‘tH = e-—quS(t)’ (4.7)
S =1+ };‘, (—an)* fo dr, fo dry - fo dr,
X V(Tl)V(Tz) <o Vir), (4-8)

V(T = eirH. Ve-—i-rH.

= i,/' f f f v(l2, 34)e|'(¢;+e.—e:—u)ral‘a;(haa'
P1 Yps VD Yp.

4.9
From (4.1), (4.2), (4.5), and (4.7), one has
o, 2) = :bi(z—;;)—a
X Tr {8'(L)as(t)S' (ty t)a(L)S(8)p},  (4.10)
a,(t) = e a7, (4.11)

S(tsy 1) = € T8ty — )
=1+ ‘;‘.(—ix)* f dr, f dry - f in
X V(r) Vi) -+ Vi)
1S [Can [Can e [T
X V) -+ V) V(r). w12

In general the density operator p may be expanded
as

pE

; ; pn, m) [n')n|
= 2 [n}n| p(n)

n

+ ; ‘/;‘ ‘/;. 0,03 [nXn| o(@1ps, 7)
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+ ,.Z /; x /,, ’ ‘/; ’ ‘/; ) AR [n){n| p(P:PsP:Ps, 1)

+ -, 4.13)
P(n,; n) = <nll P I’ﬂ), (414)
p(P1P2, n) = (nl a;alp ln); (4.15)

t ot
p(PiPz, PP, 1) = (1| 020,050, [1).

Substituting the expansion (4.13) of p into (4.10)
one sees that one has to deal with n—n elements of
the form

| V(z) -+ V(a" -+ a n). (4.16)

Such an element will vanish unless the set of mo-
menta associated with the creation operators is
equal to the set of momenta associated with the
annihilation operators. Thus the pairings of creation
and annihilation operators with common momenta
are possible and will be indicated by directed parti-
cle lines in the following diagram representation of
the expanded terms of g<.

Draw a horizontal boundary line. The af(2) is
denoted by a point at ¢ = ¢, at which a particle line
is to start and a(1) by a point at ¢ = ¢, at which a
particle is to arrive. All the interactions V() arising
from the three S can be ordered according to their
time arguments: Those V(r) from S8'(t,) are rep-
resented by vertices below the boundary line, and
those V(r) from S({,) by vertices above the bound-
ary. Those V(r) from S’(t,, {,) are represented by
vertices above or below according to whether ¢, > §,
or t, < t;. Each of these vertices will have two parti-
cle lines arriving and two particle lines leaving.

The operators a' --- a in (4.16) associated with
the initial inhomogeneities and/or particle correla-
tions will be represented by marks X and/or vertices
on the vertical line at ¢ = 0 above the boundary.

Every particle line being labeled with a momen-
tum, a diagram could be thought to represent a
schematic change in state by means of interactions
V(r) just as an N-»v diagram in the preceding
section.” In fact according to the previous analysis
the diagrams in the n-n representation have a
close correspondence with those in the N—v rep-
presentation.’® If the horizontal boundary line were
suppressed, the diagrammatical structures in both
representations would be the same. We can make
diagram analysis of the same sort. The notions
of, labeled and unlabeled diagrams, connected and
disconnected diagrams, M-type vertices, connected-
diagram expansion, self-energy diagrams, proper and

12 8, Fujita, Physica 27, 940 (1961).
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improper diagrams, reduction of diagrams, and so
on, can be used.

In the present diagram analysis, we purposely
avoid the use of Feynman diagrams representing
contractions which would arise by the application
of the contraction theorem.' However, as a con-
nected diagram will not in general (except for the
cases of long range forces and those of degenerate
bosons) have any thermodynamic singularities, the
difference between the present analysis and the
analysis by means of Feynman diagrams will be
negligible in the thermodynamic limit. In particular
a system of bosons in nondegenerate phase may be
included in the present analysis although this sys-
tem does not allow the usual form of the contraction
theorem with respect to the n—n expectation value.

Differentiating ¢g<(1, 2) with respect to f,, one
obtains

._(2_ <

- 4 %@_ Tr (' @QUH, 0] Ut}

Il

«g~(,2) ?%Lz?z—)afp f,, f,, v(13, 45)

X Tr {S+(t2)a;(lz)s’(t2p tl)a;(tl)as(tl)a4(tl)s(t1)P} .
4.17)

We can diagram-analyze the last term in the last
member in the same way. This time however, the
point at { = ¢, will have one leaving and two ar-
riving lines.

It is not difficult to see that in any proper diagram
the particle line starting from the point at { = £, ends
either at the point at ¢ = # or at a unique inter-
action vertex 3 which may arise from the three S
and p in (4.17).

In the first alternative the contribution of such
diagrams and their associated improper ones will
be included in

u(g*(1, 2), (4.18)

w() = in [[ ps P13, 195 @ut, pit). (@.19)

In the second alternative if the vertex 3 originates
in one of the three 8, this ease will be accounted for

by
[ 31

[ a6 [ anza, 966, 2
0

# G. C. Wick, Phys. Rev. 80, 268 (1050); K. Nishikawa,
J. Phys. Soc. (Japan) 15, 78 (1960); C. Bloch and C. De
Dominicis, Nuel. Phys. 7, 459 (1958),
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—f dt;,fda 25(1,.3)57 3, 2)
0

— [ at [ #nzt, 9076, 2), (4.20

=7(1, 3) = —i\? f e f (fI dap;)[v(19,78)v(54,63)

X Tr {S'(t)as(t)as(t)a(t:)
X 8'(t, ts)ai(ts)as(ts)as(ts)S(ts)e) 1.
= "‘E>(3; 1)*;

241, 3) = iN? f f (fl dap,-)[v(l6, 45)0(78, 39)

X Tr BS'(ts)ar(ts)as(ts)ao(ts)
X S’(ta, tx)a;(tx)as(tl)aat(tx)s(tl)i’}}o'

= —3%@, 1*, (4.21)

where the subscript ¢ means that contribution cor-
responding to the whole set of proper self-energy
parts defined with dressed-particle lines. A dressed
particle is the sum of an undressed line and those
lines which upon reduction give rise to the undressed
line, and represents a g~ or ¢g<. If the vertex 3 is
located on the vertical line at ¢ = 0, the contribution
of such diagrams and their associated improper
diagrams cannot be expressed simply in terms of
g and ¢g°. If we denote this contribution by D,
we may write the evolution equation for ¢< (1, 2) in
the thermodynamic limit as

fi(a/at) — & — u(l)]g<(1; 2)

= [ [ eniza, 9 - 20, 9106, 2

— [ a0 [ p 09006, 2-0°6, 214D
0 (4.22a)

This is one of corrected Kadanoff-Baym equations®
describing the evolution of partial Green’s functions
g” and g*. The other three equations can be ob-
tained by transforming the f,- and f-derivatives
of g> (1, 2) and ¢g° (1, 2), e.g.,

[—i(9/0t) — & — u(@)]9°(, 2)

—_ j'oh dt3 f d3p3[g>(1’ 3) — g‘((l? 3)}2<(3’ 2)1

— [ [ @pat, 91276, 2- 376, 21+D%.
0 (4.22b)
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The terms D, D ... may be written down
from the diagrams. In particular if the initial density
operator p is chosen to be the grand canonical opera-
tor

p = ¥ /Tr {e*V P}, (4.23)
D' and D can be expressed as
8
D = [ as, [ apzr a1, 3093, 2),
° (4.24)
’
D® = j; dBs fdapag”(l, 31)2<(3’, 2),
3
7, 2) = 7 LI (0'2)ai(6)0),
(4.25)

0”1, 2) = Fi EL T (a(natiael,

=(1,2) =\ f f (fI d ,.)[0(16, 45)(78, 29)
X Tr {8"(t,)as(t,)as(t)as(t)S(t:)
X ag*(ﬁz)ag*(ﬁz)ai’a(ﬂz)l’}]n (4.26)

(17, 2) = N f f (f14 & i)[v(78, 20)(16, 45)

X Tr {8'(L)ar(t)as(t)aqs(ts)
X S(tZ)aé*(ﬁl)aS(ﬂl)aﬂi(ﬁl)p}]ﬂ

H, - -
a{(ﬂl) = eﬂx oale B1H, = ¢ ﬂ;hal,

: @.27)
al*(8) = " "a e = g,

5. REMARKS

A. In analogy with the classical statistical case,
partial Green’s functions g”(p,t;, p.f.) and g< obey
a set of closed simultaneous equations except for the
neglect of the contribution D of the initial particle
correlations. It is known'* that for the purpose of
calculating transport coefficients the Markoffian ap-
proximation to the evolution equations can be used.
In this stage of approximation the density matrix n
could be shown to satisfy a closed equation as in the
case of the Uehling-Uhlenbeck equation'® (a very
dilute gas) and in a more general equation pre-
viously discussed by the author (homogeneous sys-
tem).

B. Corrected Kadanoff-Baym’s equations (4.22)
are derived for Green’s functions describing a sys-
tem of interacting particles, obeying the Bose—
Einstein or the Fermi-Dirac statistics, with an

14 R, Balescu, Physica 27, 693 (1961).

18 H. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43,

552 (1933).
16 S, Fujita, Physica 29, 1087 (1963).
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initial density operator p corresponding to a state
of arbitrary particle correlations and inhomogeneities.
The underlying restrictions are that (1) Green’s
functions should be finite and (2) the interaction
processes involving a finite fraction of the total
number of particles should be negligible. The re-
striction (2) excludes the case of interacting bosons
in degenerate phase. The notion of the self-energy
parts < and Z> is essentially independent of rep-
resentation and could be introduced without re-
ferring to the momentum representation (see Ref.
2). The equations (4.22) are valid also for time-de-
pendent interactions »(f), (H, = time independent),
for which, it is noted, the perturbation expansion
similar to (4.8) is still available.

C. The term D in (4.22) represents contribution
arising from the initial particle correlations. This
term D would die out in the time of the order of
the average collision duration r,. A particular case
is explicitly worked out in the Appendix. A self-
energy part 2> (1, 2) or 2 will in general consist of
two parts: one part expressible in terms of g~ and ¢<,
and the remainder. This latter part is found to be
always connected with the initial particle correla-
tions, and therefore, could be left out if one is con-
cerned with a system at a time ¢ > r,. Thus, apart
from the contribution of the initial particle cor-
relations, the Egs. (4.22) can be considered as
closed equations for ¢ and ¢<.

D. Kadanoff and Baym treated partial Green’s
functions g~ and ¢g< defined with the grand canonical
density operator, which is a main difference from
the present treatment. By choosing that the initial
time tends to — «, they implicitly assumed the
vanishing of the effect of the initial particle cor-
relations, which of course depends on the given
system.

APPENDIX: INITIAL PARTICLE CORRELATIONS*

In this appendix we show that the contribution
arising from the initial particle correlations will die
out in a time of the order of the average collision
time 7.

Subtracting (4.22a) from (4.22b) side by side and
setting that p, = p, and ¢, = ¢, one obtains

@/ot)n(p.ty) = £i(3/8t)g~(1, 1)
== [ [ Rz, 3560 + o

(complex conjugate)]

* By S. Fujita, Michael Fitelson, and Anthonﬁr( St. Pierre,
Pennsylvania State University, University Park, Pennsyl-
vania.
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+ fo "t f Epl=7(1, 3)9°3, 1) + c.c.]

F (D® — D). (A1)

From this equation we may derive the Boltzmann
equation for a dilute homogeneous gas. Such a
derivation may be seen in the monograph by one
of the authors (S. F.)."” Here, we discuss the be-
havior of the term F(D® — D) due to the initial
particle correlations. To illustrate the main points,
let us consider the simplest possible case.

We assume (a) the grand canonical density opera-
tor for p, (b) weak and short-range forces, and
(c) classical statistics. With these conditions the
term F(D® — D) will be written down from
(4.24)-(4.27)

06y = [ ax [[f s dios ' bio — pal* 1

X e)(c.+ e.-e.—u]e—it(u+c.-¢.-u)

X 6(8)(1)1 4+ ps — ps — Ps) + c.c.,

a=fp,*
.

(A.2)
fi=e (A.3)
Introducing the variable

4=P — Py
one may rewrite (A.2) as

D) = 1, [[ @ &g b@F foee
X exp ['I‘% q-(ps — Pl)]

8
A
X f d\ exp [_J—lf q-(ps — p,):| + c.c. (A4)
V]
When ¢, is large, the value of the integrand near
(¢/M)-(ps — p) = 0 is most important. In this
condition the N\-integral may be approximated by

B. This approximation becomes exact anyway in the
high temperature limit: 3 — 0. Thus,

D) = 61, [[ s g bl@F
X exp [a———-————l—_ 52@]‘} — )2]
X exp [il%q-(ps -~ pl)] +ecc.  (A5)

17 8. Fujita, Non-Equilibrium Quantum Statistical Mechanics
(Saunders, Philadelphia, to be published in 1966).
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Let us assume the form of a potential v to be
Gaussian with a range E:

M) = ATF

1 —iqer —p3/B3
v(g) = @ f &re i veE

_ 1
(2r)°

Rty &1, (A.6)

If we use this, we can easily evaluate the integral
(A.5) exactly. The calculation involves Fourier—
Gauss integrations twice like that in (A.6). We thus
obtain

o (2eM\' R ., |R? £ 4 |
D) =“’(—2‘) 64,rsefl[5+2—m-%]

2 2
X exp [——pftf/‘le(-é— + 2;‘;’6 - z%l)] + c.c.

A7)

The absolute magnitude of this quantity as a
function of ¢, has a peak at the origin and decreases
with oscillations as #, becomes large. The value of
t, for which the real part of the exponential function
become one-half the value at the origin may be
estimated by

2 2
pfti/m”(% +3 54 B) =1, (A.8)
which yields
2 2R? R _
tl = _————(pl/M)z — %vz ~1)§ = .1',, (Ag)
IMvy = 3T = %%. (A.10)

The equation (A.9) shows that [D(p:t,)| decreases
in the average in a time of the order of 7, as we wished
to show.

We may qualitatively understand this result in
the following way: In the oscillatory exponential
in (A2) e = ¢ + €& — e — ¢ is the transferred
energy before and after the two-body interaction
process. This exponential is weighted by the matrix
elements of the potential and others. If the potential
has a range R, the weight as a function of ¢ may be
shown to decrease rapidly for |¢] > ,)/R = ;%
Therefore, if ¢, is much greater than 7,, the rapidly
oscillatory exponential makes the contributions neg-
ligibly small.

Such qualitative argument can be applied to more
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general cases: It may be verified, say by a perturba-
tion treatment, that the contribution of initial parti-
cle correlations are in general composed of integrals

of the form
f T fe"“ga(e, t). (A.11)
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We may then apply the same argument to each
integral. This argument relies on the smooth be-
havior of (e, ;) as function of e. The thermody-
namie singularities are eliminated by the connected-
diagram treatment. Singularities due to the possible
bound-state formation, long-range forces, ete., must
be examined in practical cases.
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The momentum-space analyticity domain of the Bergman-Weil integral representation of the
vertex function or three-point function is investigated using the assumption that thresholds can be
introduced simply as lower limits of integration for the mass variables in the representation. It is
shown that this assumption leads to a regularity domain which is larger than the domain following
from general physical assumptions of Lorentz invariance, local commutativity and reasonable mass
spectrum. To simplify the discussion we also assume that the vertex function is regular when all three
complex variables lie in the same half-plane. Standard techniques for the evaluation of Feynman
diagrams have proved to be inconvenient for this investigation and we have developed new methods
taking explicit advantage of the fact that we only have two external vectors and, hence, can work
in 2 two-dimensional Lorentz space. Further, the vanishing of the masses for certain internal lines
has also been exploited. The techniques we have used here might be of interest also in other con-

nections,

1. INTRODUCTION

NE of the unsolved problems in a systematic

approach to quantum field theory is to deter-
mine the exact analyticity domain in momentum
space of the three-point function in theories ful-
filling the three standard assumptions of

(1) Lorentz invariance,
(i) Reasonable mass spectrum, i.e., the assump-
tion that every energy momentum vector of a

* Assisted in part by the U. 8. Air Force Office of Scientific
Research through contract AFOSR 500-64 and the National
Science Foundation through grant NSF GP 3221,

+ Present address: Department of Physics, State Univer-
sity of New York at Stony Brook, Stony Brook, New York.

1 These assumptions have been implicitly used by many
authors since very long ago, e.g., W. Pauli, Prog. Theoret.
Phys. (Kyoto) 5, 526 (1950). They were explicitly stated and
used, e.g., by H. Umezawa and 8. Kamefuehi, Prog. Theoret.
Phys. (K’yoto) 6, 543 (1951); G. Killén, Hely. Phys. Acta
25, 417 (1952); J. Schwinger, Proe. Nat. Acad. Sci. 37, 455
(1951). Later, these assumptions have also been used by
H. Lehman, K. nganzik, W. Zimmermann, Nuovo Cimento
1,205 (1955) and by A. Wightman, Phys. Rev. 101, 860 (1956).

physical state is either identically zero (for the vae-
uum) or timelike with positive energy above a given
minimum mass,

(ii1) Local commutativity, i.e.,, the assumption
that two field operators commute for spacelike sep-
arations,

Several years ago, the corresponding problem was
solved for the analyticity domain U in configuration
space of the three-point function and it was shown
that the vacuum expectation value of the ordinary
product of three (scalar) fields is the boundary value
of an analytic function regular in a certain domain
bounded by pieces of analytic hypersurfaces (viz.
cuts, F}, and §).> Afterwards, a representation of
the most general function analytic in this domain
and sufficiently bounded at infinity was written
down® with the aid of a generalization of the Cauchy

2 G. Killén and A, Wightman, Xgl. Danske Videnskab.

Selskab. Mat.-Fys. Skrifter 1, No. 6 (1958).
3 G. Kaillén, J. Toll, Helv. Phys. Acta 33, 753 (1960).
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integral given by S. Bergman and A. Weil. It turned
out that this representation, after a suitable number
of modifications, could be written as a sum of four
terms, three of which could be recognized as being
contributions from the comparatively simple Feyn-
man diagram shown in Fig. 1. This diagram has been
called the “Mercedes diagram.””* The fourth term in
the Bergman-Weil integral is associated with the
boundary curve F for the configuration-space func-
tion. It can be shown® that every finite order in per-
turbation theory with an interaction Hamiltonian
which is a multinomial in the fields to a three-point
function equal to a superposition of Mercedes dia-~
grams and simpler triangle diagrams, i.e., the term
corresponding to § is replaced by the contribution
from three cuts. In this paper we are concentrating
our attention on functions analytic in this domain
U’ characteristic of perturbation theory and bounded
by the cuts and the analytic hypersurfaces FZ,. The
Bergman—Weil integral for functions regular in au’
can be written® in the form

F(3) = fo da db de fo " dv 32 Fa(®; a;0) 90 (a; )

+ f]f da db de Faz; a)ea(a). (1)

Here, Z is a shorthand notation for the three com-
plex variables 2, 2, and %; defined by

21=

(2a)

F1e. 1. The Mercedes diagram.

¢ Cf, e.g., Ref. 5 below. The name “Mercedes’” appears
naturally if one draws the outer triangle as a circle.

& W. 8. Brown, J. Math. Phys. 3, 321 (1962).

¢ This statement can be found in the literature for the
momentum-space function [cf. K. Symanzik, Progr. Theoret.
Phys. 20, 690 (1958)] in the form that there are no singularities
when all of the momentum space z-variables (as defined
below) lie in the same half-plane. Writing down the Bergman-
Weil integral for such a momentum space function and trans-
forming it in the way described in Ref. 3, one finds a result
which corresponds to a configuration space function regular
analytic when all the configuration space variables 2; lie
in the same half-plane,

G. KALLEN AND J. 8. TOLL

Z = —( — 2"y, (2b)
%5 = —(@ —z"). (2¢)
(We use the space favored metric z* = & — 22.)

Further, a on the right-hand side of Eq. (1) is a
short notation for the three mass squares a, b, and
¢ in Fig. 1. The function F(Z; a; v) is the contribu-
tion from the Mercedes diagram in Fig. 1. It is
given by

Fy(Z; a;v)
= [ 4y Arle — 4,0) s’ — 3,0) A0 — 4, 0)

X Ar(® — o/, 0) Asz — 2", b) Ap(z’ — 2", @). (3)

(The integration dy in Eq. (3) goes over all four
components of the vector y.) The functions Ar(z, a)
in Eq. (3) are the conventional Feynman singular
functions defined by

Ar(z, 0) = ArlZ, 0] = %%& f d’p;z‘:—mp:‘:a
= —(1/8m)(a/2) H{ ((a2)h), @

—1% — e

zZ= (4a)

The function H') in (4) is the usual Hankel function
of first order and exponentially damped in the upper
half-plane. The square root in Eq. (4) is defined
to have a positive imaginary part. Further, Egs. (3)
and (4) are valid for time-ordered products of
the field operators. However, it can be proved that
the ordinary vacuum expectation value is another
boundary value of the same analytic function® and
we can here study either one of them.

When the index 7 in the sum on the right hand of
Eq. (1) is equal to one, we put v, = v, v, = v, = 0;
when 7 = 2, we have v, = v, v, = v, = 0 and for
1 =3 we put v, = v, v, = v, = 0. The functions
¢ (a; v) are weight functions which are arbitrary
except that they should decrease so rapidly at in-
finity that the integrals are convergent. The function
Fa(2, a) is the contribution from the triangle dia-
gram. It is given by

Fi(, a) = Apl2, c] Apl2, D] AflZ, a]. ®)

The function ¢i(a) is a weight with properties
similar to the other weights.

The representation (1) above is correct also when
the minimum mass in assumption (ii) is zero. In
many cases of physical interest it is desirable to
make explicit use of a positive value for this mini-
mum mass. This implies that the mass spectrum
consists of a set of sharp mass values m,; corre-
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sponding to single-particle states and continua start-
ing from the mass values m; -+ m; corresponding to
scattering states. Under those circumstances, the
Fourier transforms of the ordinary vacuum ex-
pectation values vanish below certain thresholds.
If we assume that we are only considering operators
where the matrix elements between the vacuum and
one-particle states vanish (this is the case, e.g,
for current operators), these thresholds are deter-
mined by the scattering states and given by M =
m; -+ m;. Because of various selection rules these
thresholds are different for different operators. An
inclusion of these thresholds does not enlarge the
analyticity domain of the z-space function F(2) in
Eq. (1). This is seen from the simple remark that
one can find a large class of three-point functions
fulfilling also the sharper version of assumption (ii)
by restricting the domain of integration for the
masses a, b, and ¢ in Eq. (1) by relations of the form
ad 0> M, e+t > M, and bt + & > M,
where M ; denotes the three thresholds for the opera-~
tors under consideration. The function F () obtained
in this way has singularities in the same places as
when all three thresholds vanish.’

However, the momentum-space analytic function
H(z) of the variables 2; defined by

2 = ""1’2: (ﬁa‘)
7 = —p” (6b)
z=—({p— p')a (6¢)

does have a larger domain of analyticity as a con-
sequence of the introduction of thresholds. Here, p
and p’ are the momentum-space vectors obtained
by taking the Fourier transform of the time-ordered
vacuum expectation value as follows:

H) = [ @t a

(2 )*
X exp [ip'@’ — 2) +ipe — 2")] F@. (7)

If the function F(2) considered as function of 2
[ef. Eqs. (2)] is regular analytic in U’ and properly
bounded at infinity, the function H (z) considered as
function of the variables z is also regular in the
corresponding domain U’ of z.

The duality indicated above concerning the an-
alyticity domains for the two functions F(2) and
H(z) ceases when detailed mass spectrum prop-
erties are assumed. We have already mentioned that
the function F(z) may still be singular at any

7 Cf. Ref. 3.
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boundary point of U’(3). However, in momentum
space, the mass thresholds give new lower limits
on the three cuts, and the analyticity domain of
H(z) can be extended through the corners exposed
by the withdrawal of the cuts. The resulting holo-
morphy envelope U” has not yet been determined.
The investigation described in this paper was
motivated by the desire to locate the domain w”.
A general superposition of the Mercedes and triangle
diagrams such that each term satisfies the threshold
conditions separately is analytic in a domain U’ (z)
which is at least as large as W’(z). A natural con-
jecture is that aU’’(z) might be equal to wU”(z).
In this paper we show that this conjecture is
false, i.e., that U'(2) is actually larger than U”(z).
Thus the most general three-point function satisfy-
ing nonzero threshold conditions can be obtained as
a superposition of Mercedes and triangle diagrams
only by including terms which violate the threshold
conditions separately. (The unallowed singularities
of these terms must, of course, cancel in the super-
position.) We prove this result by considering a
special example in some detail and showing that, for
this example, the representation (1) is not able to
produce the necessary momentum-space singulari-
ties if the thresholds are introduced in the way in-
dicated above. The special case in question is one
which, among many other topics, was studied by
Brown.’ It is obtained when only one threshold is
different from zero. If we suppose that it is the
quantity M; which is nonzero while M, = M, = 0,
we have several qualitatively different configurations
of the variables z; to consider. When 2z, and 2z, lie
in opposite half planes, Brown was able to find the
corresponding piece of the boundary of U’ by
studying the ordinary triangle diagram. He was also
able to show that the singularities produced by
the triangle diagram when 2z, and 2, lie in the same
half-plane are sometimes a finite distance away from
the boundary of an upper bound of ", This upper
bound is obtained by displacing the boundary curve
» for the zero threshold case’ by the amount M2

m the variable z;, The curve obtained in this way,
the displaced FJ, or the F/, is an analytic hyper-
surface which intersects the cut above the threshold.
Therefore, it defines, together with the cut, a
natural domain of holomorphy which is an upper
bound for U, As the slope of the asymptote in the
lower half-plane for 2, is the same for F/, and F?,
it follows that the boundary of U’ also has this
slope. (Note that the domain 4 which has F/, as a
boundary is a lower bound for U”.) By explicitly
studying the singularity manifold of each term in
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(1) separately, we show that its contribution to the
function H(z) has a regularity domain with a bound-
ary which, on every Riemann sheet, has an asymp-
totic slope different from the slope of F!, and Fi,.
The only exceptional case is a curve which turns out
to be identically the same as F!, and it has been
shown by Brown® that no piece of this curve can be
part of the boundary of " for a nonzero value of
M. This general technique allows us to reach our

G. KALLEN AND J. 8. TOLL

conclusion without any discussion of the Riemann
sheet to which the singularities obtained from formal
pinching arguments belong.

2. THE LEADING MOMENTUM-SPACE
SINGULARITY OF THE MERCEDES DIAGRAM

Apart from a constant factor, the momentum-
space function of the Mercedes diagram in Fig. 1
is given by

dq dq’ dQ

;o0 = [[| grame—r = roma=

Here, p and p’ are the two external energy momen-
tum vectors of the diagram. The complex variables
z are related to these vectors by Eqs. (6). The
singularities of the denominators in Eq. (8) are
interpreted with conventional, infinitesimal nega-
tive imaginary parts of all the mass squares g, b, c,
ete. The standard technique to evaluate the integral
(8) is to write the product of the denominators as
an integral over one denominator depending on
six Feynman parameters. Afterwards, the integra-
tions over the vectors ¢, ¢/, and @ can be explicitly
performed and yields a characteristic denominator
raised to a certain power. This power itself depends
on the number of dimensions in the space of the
vectors. Apart from a numerical factor this is the
only way in which the dimensionality of the Lorentz
space enters. As singularities in the function H (z; a;v)
are produced by pinches of poles in the integrand,
it follows that the position of these singularities is
independent of the number of dimensions in the
Lorentz space. (The exact form of the singularity
does depend on the number of dimensions but does
not concern us here.) The only complication which
could possibly occur would be if the dimensionality
of the Lorentz space is chosen so low that the ex-
ternal vectors are linearly dependent. As we here
have two independent vectors (p and p’) it is enough
to consider the function H in Eq. (8) in a two-
dimensional Lorentz space with one time dimension
and one space dimension. For this case, the original
integral (8) is itself six-dimensional and it is not
particularly convenient to use the standard tech-
pique to recast one six-dimensional integral into
another equally complicated form. Indeed we find
it easier to discuss the pinching of the denominators
in Eq. (8) directly in the space of the two-dimensional
vectors of integration.

The leading singularity of the function H in Eq.
(8), i.e., the singularity which is characteristic of

p — @) +ald +ollg” +vll(g— ¢V + v

(8)

the Mercedes diagram itself and not present in
contracted diagrams with a smaller number of in-
ternal lines, is obtained at the ‘“big pinch’ where
all the denominators vanish simultaneously. We
are going to call this singularity the ‘Landau”
singularity.® Actually, the vanishing of all the de-
nominators in (8) imposes six algebraic relations
between the six components of the three vectors of
integration. Consequently, all values of the external
vectors p and p’ normally yield one or more sets of
vectors ¢, ¢, and @ such that all the denominators
in (8) vanish at the same time. To be more specific,
let us first determine the vector ¢ from the simul-
taneous vanishing of the denominators involving b
and »,. In general, there are two vectors ¢ of this
kind, viz.

¢=0RQ - 1@ —p"+b—2)Q —p)
= Q- AHM=@Q - p), 5,00}, (9

where the symbol g indicates the vector which is
obtained from p by the interchange of space and
time components. Further, the quantity A(a, b, ¢) is
the quadratic expression

Ma, b, c) = a* 4+ b* + ¢ — 2ab — 2ac — 2bc. (10)

Note that the “dual pseudovector” p has the fol-
lowing properties

pp =0, (11a)
R (11b)
¢ = —ap, (11e)
P =p. (11d)

From the vanishing of the two denominators in-
volving ¢ and v, we get an expression analogous to
(9) but with ¢ replaced by ¢’, p by p’, ¢ by b, and

8 L. D. Landau, Nucl. Phys. 13, 181 (1959).
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v, by v,. When these two formulas are introduced
in the denominator involving v,, we get an algebraic
expression relating the vectors @, p, and p’. After
appropriate squarings to remove radicals, one ob-
tains one functional relation which we denote as

F@,p,p', b, ¢, va, s, v,) = 0. (12)

The zeros of this function describe the possible
singularities coming from the total pinch of the
five denominators in the integrations over ¢ and
¢’. In the following integration over @, these singu-
larities are going to pinch with each other and with
the remaining denominator @° + a, thereby pro-
ducing the singularities in the final result. Whether
or not the final funection is really singular at a point
determined in this way depends on which Riemann
sheet we are considering, i.e., whether or not the
path of integration is actually trapped between
the singularities of the integrands in the successive
integrations. For the moment we are not concerned
about these problems but only want to determine
all possible p and p’ which give a singularity on some
Riemann sheet.

A pinch in the integrations over the first of the
two components of the vector € and involving both
the denominators F and Q° + a = 0 can be used to
determine and to eliminate this component of Q.
In the next and last integration we must then ask
for a double root of the remaining algebraic denom-
inator. Another way to state this situation is to
say that we ask for a double root in, e.g., F' con-
sidered as function of one of the components of @
when the other component is determined from the
vanishing of the denominator @° + a. Most ele-
gantly, this is formulated with the aid of a
Lagrangian multiplier L and the following equations:

GQ) =FQ, )+ LEQ +a) =0, (133)
VGQ) = VoF +2LQ =0,  (13b)
Q+a=0. (13¢)

The multiplier L can now be eliminated to give
F@Q, --+) =0, (14a)

QVF@Q, -++) =0, (14b)

Q +a=0. (14c)

After the components of the vector @ are eliminated
between the three equations (14), the resulting
algebraic expression M (z; a; v) = 0 gives the position
of the Landau singularity for the Mercedes diagram.
In practice, such an elimination leads to a very com-
plicated algebraic expression and we prefer to use
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the parametric form (14) or expressions equivalent
to it directly in our discussion below. However be-
fore we discuss the detailed properties of these
singularities from the big pinch, we want to give a
list of all other singularities of the Mercedes diagram
obtained from lower-order pinches and show that,
on the physical sheet, they are all inside the singu-
larity domain obtained from the simple triangle
diagram.

3. MOMENTUM-SPACE SINGULARITIES FROM
LOWER-ORDER PINCHES IN THE MERCEDES
DIAGRAM

In the last section we have discussed the singu-
larities obtained when all the six denominators in
the integral expression (8) vanished simultaneously
and pinched. Other, lower order, singularities are
obtained when at least one of the denominators is
not involved. We have several cases to consider:

3.1. The Denominator (g — ¢’)2 + va Does Not
Participate in the Pinch

The position of the singularities obtained in this
way is independent of the denominator containing
v,. Consequently, we can investigate a simpler in-
tegral obtained by omitting this denominator. The
integration over the vector ¢ is now elementary and
yields an expression L( — (Q — p)®, b, v.) involving
a logarithm.’ This function has singularities at the
points

Q—p’+ &+ ab) =0, (15)

where € = 1. The root corresponding to ¢ = —1
does not occur on the physieal sheet. The integra-
tion over the vector ¢’ is entirely analogous and yields
the singularities

@—p) + (& + ) = 0. (16)

The integration over the vector @ now involves
exactly the same singularities as the simple triangle
diagram with the mass-squares a, (b* -+ u})?, and
(¢ + o})®. To be more explicit, we can represent
the logarithms yielding the singularities (15) and
(16) by the following formula®

® du 1

Lz, b,v) = 2ir jl;l».' Nu, b, v)]?,u — 2 an
M,, = bt + o} (17a)
Consequently, the simplified integral H$’ under

discussion is given by®

s G. Killén and J. Toll, J. Math. Phys. 6, 200 (1965),
especially Eqs. (7) and (25).
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Hi(2; 0;v)

s 7 * du du’
= T fu f,,, D, b, )N, ¢, 0))F
dQ
X f @ + a)[@ — py +ull@Q — p)* + ]
du dv’

2 0 -]
B '—47|' be.,’ -/:’tlub’ D‘(u: b; U,;)]*D\(u,, C, vb)]}
1

Z PkL(zk: ul; um)

qD(zl) 23, Zz; u,y u) a) k

o @ ’
=4 fu fM D, b, v%?f(u 6, )1}
X Halz;u), (18)
where
u, = u, (18a)
Uy = U, (18b)
Uy = @, (18¢)
P, = a®/0u,, (18d)
® = B(z,, 23, 25} Uy, Ug, Us)
= ; uz + ; Uy (Zm — 21 — 21)
+ EZ Wz (2, — 21 — 2a) + 21225, (18e)

Here and in the following we will use the notation
k, 1, m for a cyclic permutation of 1, 2, 3.

Equation (18) shows explicitly how the function
H® can be written as a superposition of functions
H, defined in analogy with Hy in Eq. (8) but cor-
responding to the triangle diagram instead of the
Mercedes diagram. The singularities of this function
are well-known.? Apart from cuts along the positive
real axes in the variables z, and starting from the
thresholds (u} + u})? it has singularities at the
following zero of the manifold ®

2 — U — Up = (—1/2u,)
X [ = tm — w)(em — w — u,) + RIRY),
Rk = >\(zk, Uy, u,,,).

19)
(19a)

The square roots appearing in Eq. (19) are defined
to behave as R} ~ z, — uy — un for |z — .
The singularities (19) are relevant when 2z, and z,
have the same sign for their imaginary parts and
the imaginary part of z; has the opposite sign. All
other solutions of the algebraic equation & = 0
correspond to singularities which do not lie on the
physical sheet.
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The main conclusion to be drawn from the anal-
ysis above is that the function HY has singulari-
ties on the principal sheet in a domain which is
not larger than the domain covered by the singulari-
ties from the triangle diagram function H,(z; u)
where u, > M3,., u, > M2,,, and u; = a. There-
fore, the singularities from this lower-order pinch
for the Mercedes diagram do not extend into a
larger domain than that which has already been
obtained from the triangle diagram.

3.2. The Denominator q'2 4+ v, Does Not
Participate in the Pinch

The integration over ¢’ is very similar to the
previous case and yields the singularity (16) with
v, replaced by v, and the vector Q replaced by the
vector @ = Q@ — g¢. Introducing @’ in place of Q
everywhere, the integration over ¢ involves only
the two denominators with the mass-squares a and
v.. Consequently, the resulting function has singu-
larities on the manifold

Q" + (a 4+ 4 = 0. (20)

The modified Eq. (16), Eq. (20), and the original
denominator involving b again give an integration
yielding “triangle singularities’’ or

B2y, 22, 255 (¢ + o}), b, (@t + 1)) = 0.

Only that root of Eq. (21) which is defined in analogy
with Eq. (19) above is relevant on the physical sheet.

1)

3.3. The Denominator q2 + v, Does Not
Participate in the Pinch
This case is obtained from case in Sec. 8.2 by
interchanging p and p’, b and ¢ and v, and v, and
thus yields

Bz, 22, 2556, O + o1, @ + o)) =0, (22

where, again, only the root analogous to Eq. (19) is
on the physical sheet.

3.4. The Denominator (Q — p’ — q')2 4+ ¢ Does Not
Participate in the Pinch

In this case, the vector p’ does not appear in the
singularity manifold which, therefore, depends only
on the invariant 2,. From general principles it follows
that such singularities can only lie on the positive
real axis. An explicit argument of the same kind as
used in Secs. 3.1, 3.2, and 3.3 above gives the fol-
lowing branch points:

2 — (@ + &b + ) = 0,
2, — (a* + 51b* + éavz + 54712)2 = 0.

(23a)
(23b)
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The symbols ¢, are, as before, either equal to -+1
or to —1. On the physical sheet, all the ¢; are equal
to +1.

3.5. The Denominator (Q — p — ¢)2 + b Does Not
Participate in the Pinch

This case is obtained from case in Sec. 3.4 by
interchanging p and ', b and ¢ and », and v, and
thus yields

2 — (@} + e + L) =0,
2, — (@} + elct + o} + ed)? = 0.

3.6. The Denominator Q2 -+ a Does Not
Participate in the Pinch

{24a)
(24b)

By introducing the vectors @' = Q — ¢, ¢’ =
g — ¢/, and p” = p’ — p one finds that this case is
analogous to Secs, 3.4 and 3.5 above and yields

(25a)
(25h)

zs — (B + €' + &l =0,
2, — (B + ¢t + &l 4 &) = 0.

3.7. Two or More Denominators do not
Participate in the Pinch

When two of the denominators do not participate
in the pinch, one finds by arguments analogous to
those presented above that one gets only the same
branch points on the cuts as exhibited in Eqgs.
(23)-(25). When three or more denominators do
not participate, the integral is independent of the
external vectors. Therefore, such pinches do not
give interesting singularities.

4, FURTHER DISCUSSION OF THE BIG PINCH

The argument in the previous section shows that
the only possibility of obtaining singularities on the
physical sheet from the Mercedes diagram outside
the “triangle region” comes from the big pinch dis-
cussed in Sec. 2 and exhibited in Egs. (14). To carry
through the details of the corresponding algebra
it is convenient to utilize as much as possible the
fact that two of the masses v vanish in the case of
interest for the representation (1). Because of the
inherent symmetry it is enough to study, e.g., the
case 1 = 3, where 7 is the summation index in Eq.
(1). The other two terms in Eq. (1) can be obtained
from this case by permutations.

To obtain the function F in Egs. (12) and (14)
for this case we have to eliminate the four compo-
nents of the vectors ¢ and ¢’ between the five equa-
tions

¢ =0, (26a)
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¢* =0, (26b)

@— ¢V +v=0, (26c¢)
Q-p—9@'+b=0, (26d)
Q@-p —¢Y+c=0. (26e)

The first three of these equations have the solution

g. = €go; €= £l (272)
g = —eq) = ev/4qo, (27b)
¢ = —v/4q,. (27¢)

When Eqs. (27) are substituted in (26d) and (26e)
and the number ¢, eliminated between the resulting
expressions, one obtains

F=[Q—p/+0d@Q-p)+d
— @ — P)@Q — p) + «@ — @ — ). (28)

Actually, it is sufficient to treat the case ¢ = +1in
this equation. Afterwards, the case e = —1 can be
obtained by a space reflection. Such a transformation
does not change the scalar products of the external
vectors which are our basic variables.

Putting ¢ = +1, we next want to eliminate the
two components of the vector @ between the three
equations (14) with the explicit form of (14a) given
by (28). To do this it is convenient to introduce, in-
stead of the components of €, two invariant quanti-
ties 7 and ¢ given by the following definitions:

r=—'Qp+ Q) = —u' @ + @), (292)
¢ = —(/az)Qp — Q) = —a Q' — QF'), (29b)
£ = @p + ). (29¢)

The two quantities 7 and ¢ are essentially ratios of
light cone coordinates® of the vectors @, p, and p'.
Equation (14c) says that the product of these two
variables is equal to one

7o = 1.

(30)

Eliminating one of the variables, say o, between
Eqgs. (14a) and (14c) we find a relation which the
remaining variable 7 has to fulfil. After some
algebraic manipulations we get

T£4A + B+ C =0, 31)
A =712+ c—a—2z)+a, (31a)
B=A0b—-a—=z)+vD, (31b)
C = z{ad — vD), 31¢)
D = (g — z71). (31d)
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In terms of these new definitions, Eq. (14b) is
equivalent to the condition that the expression (31)
has a double root when considered as function of r
for £ fixed, or, in other words, that the derivative
of this expression with respect to » vanishes,

24 ;2 a ¢ _
EdT(TA)-i-sdT(fB)-}-dT = 0.

(32)
An explicit algebraic elimination of the variable r
between Eqgs. (31) and (32) has not proved very
practical. It can be performed and leads to a poly-
nomial in 2,, 2, and § which is of the eighth degree
in £ The variable z; is related to the variable &
through

33)

The polynomial for £ obtained in this way is rather
complicated. Here, we only exhibit the eighth degree
term in £ and the term which is independent of &

az}\(zn a, b)}\(zm a, C)ES + -+ (2132)4(0’ + v)z
X Nz, b, @ + v)\zz, ¢, @ +v) = 0.

23 =2, + 2 — £ — 22/t

(34)

All the coefficients not written out explicitly in Eq.
(84) are polynomials in the variables 2, @, b, ¢, and
v. In particular, they involve no denominators.
Finally, it should be remarked that the algebraic
properties of the surface M (z; a; v) are usually more
easily studied with the aid of the parametric rep-
resentation (31), (32), and (33) than from the ex-
plicit and rather involved eighth-degree polynomial
(34).

Equations (31), (32), and (33) are arranged in a
form where it is convenient to study the variable
2; as a function of the other quantities. If we, in-~
stead, want to consider, e.g., z; as the dependent
variable we have to rearrange Eq. (33) and solve
for z,. This gives

2, = £+ 2+ 22/(E — 2). (35)

When this expression is substituted in Eqs. (31) one
finds after some algebraic rearrangements

of + B+ =0, (36)

= As(r — 1), (36a)
B= —za+t+ Al7(b — a — z) + a] +0D(r — 1),

(36b)

v = Alrla — bz + a2 — 2,)] — vD(rz; + 23 — 2,).

36¢)

In this case we have to replace Eq. (32) by the
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following condition

&
dr

It turns out that if one eliminates one of the variables
r or £ between the two Eags. (36) and (37) one obtains
a polynomial of the twelfth-degree instead of the
eighth-degree polynomial obtained from Egs. (31)
and (32). To obtain the manifold M (z; a; v) in this
way one then substitutes the solution for £ in Eq.
(35) to get 2,. The explicit expression for the twelfth-
degree equation for £ is somewhat complicated. It can
be formally simplified if we introduce the quantity
n = £ — 2z, as variable instead of £. This is also a
convenient variable as z; becomes infinite when 7
is either infinite or zero. The expression analogous
to Eq. (34) now reads

22Nz, @, ¢) + -+ 2525(c — v)* N2, @, ¢ — v) = 0.

(38)

e+ +E =0 37)

Finally, if one wants to consider 2z, as dependent
variable, one can use Eqgs. (36) and (37) but with
2, replaced by 2z, and b and ¢ interchanged. The
quantity 2, itself is then obtained from (35) with
2, replacing 2z, on the right-hand side.

The formalism developed in this section is suf-
ficient to discuss all the algebraic properties of the
surface M (z; a; v) which we need. Here, we only
mention that in the limit when v goes to zero the
surface M {z; a; 0) includes the manifold ®(z,, 2,, 2;;
¢, b, @). To see this we remark that the expression
in Eq. (31) for v = 0 simplifies to

(78" + 70 — a — 2)) + 24}
X [z + 7lc — a — z,) + a] = 0.

If the two roots of r which are equal both come
from the first factor, we must have

k(zl, a, b) = 0,

(39a)

(39b)

or

2, = (e} £ bH)? = M?, = real number. (39¢)

These solutions do not appear when we solve
M (z; a; v) for 2; or for z,. However, they do appear as
limiting cases when we solve for z,. Straight forward
calculations show that the limiting values of the
numbers » and £ are

T= (Mﬁb +a— b)/‘ézzMzb
X M 42, — 2, = N2, 2, Mib)}ﬂ) (40a)
E=3M0 + 2 — 2 F Nz, M3)}. (40b)



ANALYTICITY PROPERTIES IN MOMENTUM SPACE

We note that the result given in Egs. (40) cor-
responds to four values of 7 and £ as the mass M,
can assume the two values indicated in Eq. (39¢).
Consequently, four of the twelve roots for z, men-
tioned after Eq. (37) collapse in pairs to the thres-
hold values (39¢) in the limit when » goes to zero.
The remaining eight roots as well as the eight roots
of Eq. (84) go over into the manifold ®(z,, 2., 2s;
¢, b, @) and correspond to the simultaneous vanishing
of the two factors in Eq. (39a). The corresponding
values of 7 and £ are given by

r = (1/22)e + a — ¢ + R}, (41a)
£ = (1/40)(z + a — ¢ — R +a — b + ¢RY).
(41b)

As before, ¢ and ¢ are equal to =1 independently.
We have assumed that a is different from zero in
Eq. (41b). Each one of the four values of £ given in
(41b) are double roots of Eq. (34) in the limit when
v goes to zero. For small values of » each double
root splits up in two roots which differ by a term
proportional to v}, The corresponding roots of r
and 2; or z;, respectively, are fourfold in the limit
when v goes to zero and differ by terms proportional
to v? for small values of ». The actual values of 2, and
2z, for v = 0 are given by Eq. (19) with ¥ = 1 or 3,
respectively, and appropriate assignments of the
variables %; in terms of g, b, and c.

Taken literally, the discussion above is relevant
only for one term in the representation (1), viz. the
term with ¢ = 3. To obtain the term with ¢ = 1, we
have to permute 2, and z; as well as the mass squares
e and c. To obtain the term with £ = 2 we permute
instead, the variables z, and z; and the mass squares
a and b.

5. THE MANIFOLD M(z; a; v) FOR z, AND z.
FIXED AND z; VERY LARGE

As was mentioned in the introduction, we are
particularly interested in the situation when two of
the variables z; have fixed values with the same sign
for their imaginary parts and the third variable 2,
goes to infinity in the opposite half plane. Because
of the inherent asymmetry of the manifold M (z; a; v),
we have to discuss two cases, one of which is obtained
when the imaginary parts of z;, and 2; have the same
sign while the imaginary part of z; has the opposite
sign. The second case is obtained when, e.g., z; and
z; have the same sign for their imaginary parts
while z; lies in the opposite half-plane. In this
section we discuss the first of these two cases. From
the work of Brown® follows that the boundary of
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'’ for this case has an asymptote with a slope
parallel to the complex number —z,z, also in the
case when M, # 0 but M, = M, = 0. Therefore,
we are interested in the asymptotic form of the singu-
larity manifold M (z; a; v) when z; is very large
and z; and 2z, are fixed complex numbers in, e.g.,
the upper half-plane. We want to compare the
slope —z,2; found by Brown with the slope of the
boundary of the regularity domain for all values of
a, b, ¢, and v consistent with the threshold condition
b+ ¢ = M,

From Eq. (33) follows that the variable z; goes
to infinity (for fixed values of z; and z,) when the
number £ is either very large or very small. From
Eq. (34) we conclude that £ can be infinite only
when at least one of the mass squares a, b, ¢, or v
is infinite or when the coefficient of £® vanishes. For
complex values of z, and 2z, the eighth-degree coef-
ficient can vanish for ¢ = 0. Further, { = 0 is a root
of Eq. (34) only when the £independent term van-
ishes or when at least one of the quantities g, b, ¢, or
v becomes infinite. If the imaginary parts of z, and
2, are different from zero, the f-independent term
in (34) vanishes only fora = v = 0.

5.1. The Limit When at Least One of the Mass
Squares a, b, or c is Very Large

The solutions of the algebraic equations (34) and
(38) all correspond to singularities on some Riemann
sheet but all of them are not expected to lie on the
“physical sheet.” A detailed discussion of the partic-
ular Riemann sheet of a given singularity is, in
general, very complicated. However, a few special
cases can be easily handled without too explicit cal-
culations. Consider the equation M (z; a; ») = 0 and
pick one particular solution for the variable z; of
the form

23 = f(21, 255 @, b, ¢;v). (42)

The function f(z,, 25; @, b, ¢; v} is an analytic function
of z, and 2, regular everywhere except for isolated
branch points. The value of 2, given by (42) cor-
responds to a singularity of H,(z; a; ») only on
certain Riemann sheets. If the point (42) is not a
singular point of H, at an initial point on a given
sheet, it remains a non-singular point of H, for a
continous variation of 2, z;, and the mass squares,
provided that the point (42) does not pass through
another singularity of H, and provided that z,
and z; do not pass through a branch point of f.
This property will be exploited to show that, for
sufficiently large values of at least one of the quanti-
ties a, b, and ¢, the solution (42) is never relevant
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on the physical Riemann sheet. This ““physical sheet”
is defined by evaluating Eq. (8) with the vectors
p, p', and p — p’ all real and space-like (which
implies all z, real and negative) and continuing
analytically from there. To specify the physical
sheet completely it is also necessary to indicate
certain cuts. First, we have the cuts (23), (24), and
(25) along the real axes. In addition, we also have
cuts from the branch points (18), (21), and (22).
The detailed position of these cuts does not matter
for our argument except that they must always lie
outside the domain U”. Evidently, such cuts are
always possible.

In the limit when at least one of the quantities
a, b, and ¢ goes to infinity, some of the roots (42)
also become infinite. In this case, the leading term
of Eq. (42) is of the form

23 = wa)(zl: z2) + .- ] (43)

where K is a real quantity which goes to infinity,
The function §* (z,, 2,) stays finite in the limit. In
general, it depends on z, and 2,'° as well as on those
mass squares and mass ratios which stay finite.
Further, in the limit we are considering, two of the
three thresholds M, go to infinity. At least one of
these thresholds is either M, or M,. For definiteness,
let us assume that M, goes to infinity. We also
know that when z, (or any of the variables z,) is
on the negative real axis, the domain U includes
the product of the two other z-planes cut along the
real axes from the thresholds (23), (24), and (25).
Starting from a given configuration of 2z, and 2z,
with both of these variables in the upper half-
plane, we can now move z, and 2z, together in such
a way that { (z,, 2.) remains fixed while 2, is moving
to some point on the negative real axis. We choose
such a path for the variation of z; and 2, that we
avoid all branch points of the function ' (z,, 2,) and
such that z; does not cross any cut. Further, the
path must be such that z, remains finite. Because of
the algebraic character of the functions (2, 2,)
and M(z; a; v) this is always possible. When z,; is
on the negative real axis the only singularity in the
z,-plane is the cut starting from the very large
number M;. None of the branch points (18.e), (21),
and (22) lie on the physical sheet. When z, is moving,
the branch points in the z;-plane also move.
Normally, i.e., except for certain isolated values
of 2, which we also avoid, these branch points in

10 The exceptional case when f(¥(z,, 2z,) is actually in-
dependent of 2z, and 2z, is uninteresting for our discussion
as the corresponding asymptote in the zg&plane is clearly

inadmissable for z: and 2. negative and is thereby eliminated
as & possible boundary of U,
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the z,-plane either remain at finite points or always
stay near infinity when K is large. Those branch
points in the z,-plane which remain at finite points
never come up on the physical sheet as the branch
cut on this sheet starts from a very large threshold.
The branch points which are close to infinity are
evidently not circled by z, during its motion. Con-
sequently, the singularity of the function H 4 (z; a; v)
remains on the sheet where it is when 2, is negative
and real, i.e., not on the physical sheet. This proves
that all the solutions of the equation M (z; a;v) = 0
correspond to singularities which do not lie on the
physical sheet when at least one of the variables
a, b, and ¢ is very large.

We may note that the argument presented above
is very general and makes very little use of the de-
tailed form of the manifold M (z; a; v). Therefore, it
applies to the discussion of most vertex Feynman
diagrams. In particular, we remark that it can be
used to show that all roots of the equation ®(z;a) = 0
lie off the physical sheet as soon as at least one of
the mass squares a, b, and ¢ is large enough. Intui-
tively, these results are very reasonable as the limit-
ing case which we are considering corresponds to
intermediate states with particles of very large
masses. These particles should have only a very small
influence at any finite momentum and thus are not
expected to give rise to singularities for finite mo-
menta. Our result actually proves more than this as
we have shown that there are no singularities on the
physical sheet when two of the three variables z,
are finite even if the third variable z, goes to infinity,

5.2. The Limit When v is Very Large and @, b, and ¢
finite

The intuitive argument at the end of the last
paragraph suggests that also in this case all the
singularities of H »(2; a; v) should lie off the physical
sheet. However, the argument actually used in
Sec. 5.1 does not cover the situation when only v is
very large as the thresholds (23a), (24a), and (25b)
stay finite. Therefore, both M, and M, are finite.
Consequently, we must handle the case of very
large v by more explicit calculations.

Equations (31) and (32) can be solved explicitly
in the limit of very large ». After some elementary
algebraic work one finds that the eight solutions in
this limit become

b0 = (@2/a)1 = 2i(bo)t/av], (4
b0 = —20/(2, — M3), (452)
w = (@ £ b, (45Db)
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$5.0 = —20/(2s — M 3:), (46a)
M = (at = &7, (46b)
£s = —v =% 2 — a)c — a)/all. 47

The two roots &, . correspond to the variable z;
having the value

2, =2, +2 —a—zz/a+ O(v"*).

In the limit when » goes to infinity this is exactly the
curve F/, mentioned in the introduction. It has been
proved by Brown’ that every point on this curve is
inside A’ for M; # 0. Consequently, the singulari-
ties of H x(z; a; v) corresponding to the roots in Eq.
(44) do not lie on the physical sheet. The roots
£, in Eq. (45) and &, in Eq. (46) correspond to
very large values of z;. However, the slope of the
asymptote of the curve described by z; for fixed
2, and z,, when v goes to infinity depends on only
one of the variables 2, and z,. Consequently, it is
possible to find values of 2z, and 2, such that either
of these asymptotes lies inside U”. Therefore, at
least for certain cases the corresponding singularity
points do not lie on the physical sheet. In principle,
it would be possible to argue by continuity from here
and discuss whether or not these points ever come
up on the physical sheet by passing through one of
the cuts (18e), (21), or (22). However, we do not
want to enter into these details as it is clear from the
formulas given that the slope of the asymptotes
under discussion is not the “correct’” slope —zz,
which is required for the boundary of U”. This
last observation also holds for the roots £; s where
the slope of the asymptotes is essentially horizontal.
Consequently, none of the roots of the manifold
M (z; a; v) obtained in the limit when v goes to in-
finity can give the asymptotic boundary of .

(48)

5.3. The Limit When a Goes to Zero

The discussion in Sees. 5.1 and 5.2 takes care of
all cases when the mass squares a, b, ¢, and v are
very large. As has been shown previously, the only
remaining case when the quantity ¢ becomes very
large is obtained in the limit when a goes to zero.
Also for this case one finds that it is possible to
obtain explicit formulae for the eight roots of Eqs.
(81) and (32). An algebraic computation using an
expansion technique in powers of a or o' and as-
suming v # 0 gives

b2 = 2:(2y — M},)/ (2 — ©), (49a)
M, = (b} oY, (49b)
Ba=a—M :-)/ (& — 1), (50a)
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M, = (¢ = o), (50b)

5.6 = (21 — b)(z2 — ¢)/a = 2i(bev/a)?, (51)
- V2129 . 2 3

R P A [1 + 2’(0)

(& — b — ub]*[(zz — ) — vc]*

x| egY 5 Il am-o 1 ©
By inspection one finds that all the roots listed above
correspond to a finite £ and thus also to a finite 2,
when a goes to zero with the exception of the two
roots £5,4 in Eq. (51). The value of z, obtained from
&4 approaches asymptotically a parabola with an
axis which has the slope —(2; — b)(z, — ¢). As the
mass squares b and ¢ are coupled by the threshold
condition b* + ¢t = M, = 0, this slope is never
equal to —2z;2,. Without discussing the Riemann
sheet of this singularity we can state that, if it is
on the physical sheet and corresponds to a part of
the boundary of WU’ for some value of b and ¢, it
cannot be part of the boundary of a”,

There remains to discuss the case when both a
and » go to zero simultaneously with a finite ratio.
[The cases when this ratio is either zero or infinite
can be obtained as special cases of Egs. (49)-(52) in
one case and Eqs. (41) in the other case.] By cal-
culations similar to those indicated earlier one finds
that some of the roots for ¢ and 7 can be understood
as special cases of the formulas given above. This
is the case for the roots given in Eqs. (49) and (50).
For the other roots one finds, when @ and v are of the
same order of magnitude,

_ b —o0 2, — C 2, — b
b.o = a —bz,—b_czz—c
=+ 2i(bev/a)t,  (53)
s = [22/(50 — b)(&2 — ©)](a} = ). (54)

We note in passing that the limit of Eqgs. (51) and
(52) when v goes to zero can be understood as special
cases of Eqgs. (53) and (54) when a is much smaller
than ». In a similar way, we can understand those
limits of Eqgs. (41) which are obtained when a goes
to zero and which do not agree with the limit when
v goes to zero in Eqgs. (49) and (50), as special cases
of Egs. (63) and (54) with » much smaller than a.

One finds that the two roots for £ which are given
by Eq. (53) are very large while the two roots in
Eq. (54) are very small. In either case z; is very large
but the slopes of the curves obtained in the z;-
plane are given by —(z;, — b)(z; — ¢) in one case
and by (& — b)(z; — ¢)(a? = @} ™% in the other
case. The first of these numbers is never equal to
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—z,2,. For fixed values of b and ¢ it is evidently
always possible to find positive, real numbers a and
v such that (2, — b)(z; — c)(a® £ @~ has the
same argument as —z,2,. However, these values of
a and v can never correspond to the boundary of the
singularity domain for H ,(2; a; v). Small changes
in ¢ and v bring the point from this solution of
M(z; a; v) = O inside the domain U”, where the
corresponding singularity must not be on the phys-
ical sheet. By continuity arguments we then con-
clude that it has to be off the physical sheet also
when the point in question lies outside U’ but close
to its boundary. It can never come up on the physical
sheet until it crosses a cut starting from one of the
triangle singularities in Egs. (18e), (21), or (22).
However, these branch points are known to lie a
large distance away from the boundary of U’ in
the asymptotic region where z; is very large. Sum-
marizing, we find that the singularities obtained
when both a and v are very small never lie on the
boundary of a”.

Our discussion so far has shown that the singu-
larities of the Mercedes diagram always lie in such
positions that they, asymptotically, are very far
away from the curve F, mentioned in the intro-
duction and known to be the boundary of an upper
bound of U’ as long as we consider the case when
z; and 2z, have the same sign for their imaginary
parts while the imaginary part of z; has the opposite
sign. The remaining case when, e.g., 2z, and z; lie
in the same half-plane and 2z, in the opposite half-
plane is discussed below.

As an illustration of the algebraic discussion above
we show in Figs. 2 and 3 a numerical example of

V-e00
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Fia. 2. Singularity manifolds corresponding to Eq (34)

plotted in the zs;-plane with 2, = 1 + 24, 2z, = 2 1 =

2 =0, M; = +/2,a = 0.81. Themasssquaresbandcare
chosen in such a way that the point v = 0 lies on the triangle
envelope. This implies b = 0.3291 and ¢ = 0.7065.
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Fia. 3. The remaining roots of Eq. (34) for the same param-
eter values as in Fig. 2. This figure shows those roots which
degenerate to the nonrelevant root of the @-manifold in
the limit» = 0.

the eight solutions of the equation M(z; a;v) = 0
obtained for fixed values of z,, 2., a, b, and c. The
mass square v is varying from zero to infinity and
we have plotted z; as function of ». The actual nu-
merical values of the fixed parameters are shown in
the plots. The mass squares b and ¢ have been chosen
in such a way that the point obtained for v = 0 and
corresponding to the relevant root of Eq. (41) lies
on the envelope of the singularity domain of the
triangle diagram with the same thresholds as the
Mercedes diagram. Figure 2 shows those four roots
which start at this relevant triangle singularity for

= 0 while Fig. 3 shows the other four roots which
start at the nonrelevant triangle singularity. In our
example it happens that two of the roots in Fig. 2
end up at a point on the curve FJ, and corresponding
to Eq. (48). The other two roots go to infinity. By
inspection one sees that only those two roots which
lie above the point P and below the positive real
axis in Fig. 2 could be on the physical sheet and
correspond to relevant singularities. However, both
of these solutions are in a domain where we already
have singularities from the triangle diagram and,
therefore, they are not interesting for our discussion.
By inspection one also sees that all the four roots
exhibited in Fig. 3 must be off the physical sheet.
For completeness, it should be remarked that the
situation shown here may be changed for other
values of, e.g., the parameter a. If this mass square
is increased, it happens that one of the roots in Fig.
3 ends up on the curve F/, while one more of the
roots in Fig. 2 goes off to infinity. In our numerical
example this happens for a value of a of about 0.88.
In this particular case the equation M(z; a; v) = 0
has a double root for one particular value of ».
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6. THE MANIFOLD M(z; a; v) FOR z, AND z,
FIXED AND z, VERY LARGE

Next, we consider the case when the two variables
2, and z; are fixed in the upper half-plane and we
solve our manifold M (z; a; v) for z,, i.e., use the
formulas exhibited in Eqgs. (36) and (37). Here, we
are mainly interested in the case when 2z, is very
large. The same technique which was used in Sec.
5 can be applied here too. First, we remark that the
argument which was used in Sec. 5.1 to dispose of
the case when at least one of the mass squares a, b,
or ¢ becomes infinite can be used again and gives
the result that the corresponding singularities of
H x(z; a; v) do not lie on the physical sheet. Con-
sequently, we consider only finite @, b, and ¢ below.
The mass square v, however, may go to infinity.
When v is finite, we find from Eq. (38) that » goes
to infinity only for ¢ = 0 and 4 goes to zero for
¢ = v or for Mz, @, ¢ — v) = 0. The last condition
can only be fulfilled for v > ¢ as long as Im(z,) = 0.
As in Sec. 5, we consider these cases separately.

6.1, The Limit When v is Very Large

This case can be discussed with the same method
as we used earlier, e.g., in Sec. 5.2. After some alge-
braic work one finds that the 12 roots for ¢ and 7
when » is very large become

: 3
bia = azfazz |:1 +3 izzz (aTbc> ] + (55)
b0 = 20 — 23(1 + M35/v), (56)
£s.6 = 20/(M2, — 25), (67
bre = —v & [ — o), (58)

Eoro = (22 — a)/ev = (2/zsf(e. — 0)° — aclt, (59)
22y, 20 (b))
11,12 = 2, + 'y =+ ” <v) .

The quantities M,, in Eq. (56) and M,, in Eq. (57)
are the same combinations which appeared in Egs.
(45b) and (46b). From Eq. (35) one finds that 2,
does not become infinite unless £ is either infinite or
equal to z,. By inspection one sees from the equa-
tions above that this happens for all cases above
except the first four ones. However, the values
for z, obtained from the eight interesting roots above
are approximately given by

(60)

2, vz, /(M2 — z,) from Eq. (57), 61)
2 = —y from Eq. (58), (61b)
2, = (v/e)(z, — a) from Eq. (59), (61c)
7 =2 from Eq. (60). 61d)
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Evidently, none of these roots corresponds to a
possible boundary of a”. Consequently, even if
some of the roots found here are on the physical
sheet, they need not be discussed further here.

6.2. The Case When the Mass Squares ¢ and v are
Equal, Finite, and Nonvanishing

At the beginning of Sec. 6 we found that at least
one root 7 in Eq. (38) goes to zero for ¢ = v inde-
pendently of the values of the other mass squares
and of the values of 2z, and z;. In this case, z; be-
comes infinite and we are interested in the slope of
the corresponding asymptote. To find the value of »
for which this infinity occurs, we return to Eq. (36)
and substitute ¢ = 2, in this expression. We find

(@ —znlle -2 —7)+7c—v)]=0. (62

From Eq. (62) follows immediately that we have a
double root in 7 given by

T = a/z, (62a)

when ¢ = ». Next, we use an expansion technique
around this point and find with the aid of Egs.
(35), (36), and (37) the following behavior of 2,
in a neighborhood of ¢ = v:
. 4c

2 " _(Z—-—v)z (22

—a)e—0b). (63
Because the two mass squares a and b are coupled
by the relation a* 4+ b* = M, the asymptotic slope
implied by Eq. (63) is always different from the
slope —z.25 required for the boundary of U”. Con-
sequently, the root of the manifold M (z; a; ») which
goes to infinity for ¢ = v is not interesting from
our point of view even if it lies on the physical
sheet.

A few remarks about the asymptotic solution
presented in Eq. (63) may be appropriate. First of
all, we note that the expression for 5 in Eq. (63)
behaves as (¢ — »)* in the limit when ¢ goes to v.
From Eq. (38) we see that only one root of this
kind occurs. Consequently, there is no other possi-
bility for 2z, to become infinite than in the case con-
sidered here. We further note that the right-hand
side of Eq. (63) becomes indeterminate if the com-
mon value of ¢ and v is zero. Consequently, the limit
when both ¢ and » vanish is not adequately discussed
by the formulas given here. We shall return to this
question in a later section.

6.3. The Case M(z5,a,¢c— v) =0

An entirely analogous discussion can be carried
through for the second case mentioned at the be-
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ginning of Sec. 6, viz. M (z,, g, ¢ — v) = 0. From Eq.
(62) we see that this situation corresponds to a
double root in 7 of the square bracket. More ex-
plicitly, this means

+al £+ ¢ — o)t (64)

If z, is a complex number, Eq. (64) can only be ful-
filled if v is larger than ¢ and we get

a = [Re 2]’ = i{Re (z) + |21, (64a)
i{—Re (2,) + |z.]]. (64b)

The corresponding value of = obtained from Eq.
(62) is

:!:z§ =

v —c = [ImaA] =

r = 31 4+ |z.|/z]. (64c)

An expansion technique of exactly the same kind
as used above now gives the following expression
for 5 in a neighborhood of the point (64)

2 1z — |25 _ _
b—2 202, + lz2| [es (e ’z2|) ez + 122[)],

7 =
(653)
(65b)
(65¢)

a = a— 3Re (@) + |2)),
& =10v—c+ 3Re () — 2.

The corresponding value of 2, becomes approxi-
mately
22 2 2
z, = L%3 —Zz(za — b)_z_ijil
22 b IZ2|
2

X a2 — |]) — eln + |2)) (66)
Clearly, the asymptotic slope implied by Eq. (66)
is entirely different from the slope of FJ, and we
find that the corresponding curve, if it lies on the
physical sheet, is certainly not the boundary of .
The expansions given in Eqs. (65) and (66) are
valid as long as z, and z; are complex numbers with
nonvanishing imaginary parts and as long as the
mass square v is different from zero. The last con-
dition is always fulfilled as long as Eqs. (64) are
valid.

6.4. The Case When the Mass Square ¢ Vanishes

The discussion in the previous sections has dis-
posed of all cases when the mass squares @, b, ¢, and
v either go to infinity or approach finite values in
such a way that the complex number 2z, becomes
infinite. Further, the case when the mass square
v alone goes to zero has been disposed of earlier in
sec, 4. Consequently, we now have to study the
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remaining cases when either the mass ¢ alone goes
to zero or when the masses ¢ and v both approach
zero simultaneously. In this section we discuss the
first of these cases.

The special case when the mass square ¢ goes to
zero can be discussed using Eqgs. (36) and (37) in
the same way as we have previously discussed Egs.
(31) and (32). However, the algebraic work here
becomes somewhat more involved and it is not
possible to give explicit values for all the roots in the
same way as we have done before. Putting ¢ exactly
equal to zero in Eq. (36) and introducing # instead
of £ we get

(@ ~— zn){n’+(+ — 1)°
+ glr(r — Db — v — 25) — (@ — 2z7)(F — 1)7]
4 mz; + 23 — z7)(r — 1)} = 0. 67)

If the first factor a — z,7 pinches with the expression
inside the square bracket, one gets a second-degree
equation for 7. Actually, each root in that second-
degree expression corresponds to a double root of
Eq. (38) as one finds after considering also terms
which are of first order in ¢ in Eq. (67). Using an
expansion technique of the same kind as before, one
gets the following expressions for the corresponding
four roots:

3ao/(a — 2)]lv +2, — b+ e} + [2(e0)! /N XY

N =
for 1=1,---,4, (68)
X=@w0—b—2z+4+ &)+ a\/a —2)
X [0—b4 e —2],  (68)
N = Nz, b, v), (68b)
where e and ¢ as usual assume the values +1 in-
dependently.

The condition that the big square bracket in Eq.
(67) has a double root leads formally to an eighth
degree equation in y. However, it so happens that
the two highest-order terms in this eighth-degree
expression have zero coefficients and, consequently,
we get only six finite values of 5 in this way. The
detailed form of the sixth-degree equation is rather
complicated. Here, we only give its highest- and
lowest-order terms in the same way as we have
indicated the corresponding terms in Eq. (38)

1iNzs, b, 0) + -+ + 22Nz, 0, —) = 0,
i=5,---,10.  (69)

The remaining two roots of 7 in Eq. (38) both behave
as 1/¢c. More explicitly, one finds

Mgz = —(1/6) — a)(z; — :.)

for

(70)
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Clearly, 10 of the 12 roots obtained in the limit
when ¢ goes to zero correspond to finite values of 1.
Two of these finite values can possibly be equal to
zero. This happens if the last factor A(z;, @, — v) in
Eq. (69) vanishes., However, the roots obtained in
this way are special cases of the roots discussed
earlier in Sec. 6.3. The corresponding asymptotic
slope is given by Eq. (66) with ¢ = 0 and, conse-
quently, uninteresting. The infinite roots for n ob-
tained in Eq. (70) correspond to an asymptotic
slope not equal to the interesting slope —z.2; ex-
cept in the special case a = 0 and b = » = M
Consequently, we investigate this special case in
some more detail. When substituting the mass values
just mentioned in the original Eq. (36) but leaving
¢ arbitrary, we find after some simple rearrange-
ments that the whole expression (36) can be written
in the following way:

P {EE — )zl — 1) + [ — o — 2))E(1 — 1)
+ Mic(t — 2,) — tcz; + Mizp2,} = 0. (71)

The interesting roots for £ corresponding to Eq. (70)

occur when the curly bracket in Eq. (71) has a

double root. The exact condition for this to happen

is given by

(et — 2) + 2:2)[cE® + Eaales — ¢ — 4M7)
+4ME) = 0. (72)

The two roots of £ which become very large when
¢ goes to zero are given by

ot
NZgZa/(Za - 4M?) - zz(zs - 4M?)/cy

tn = (&/2c){c + AMT — 2, — A\, ¢,
(73a)
(73b)

i = 25 — Z25/C.

The root given in Eq. (73a) evidently corresponds
to the plus sign in M,, in Eq. (70) and is uninterest-
ing from our point of view as the asymptotic slope
is incorrect. The result in Eq. (73b) yields exactly
the curve F, which has been shown by Brown’ to be
outside U”. It follows that the corresponding root
of the manifold M(z; a; v) = 0 does not give a
singularity on the physical sheet. This is also in-
tuitively reasonable as we expect that only singu-
larities associated with thresholds where the sum
of the masses appears should be on the physical
sheet (cf. Sec. 3). As a result of this analysis we are
able to conclude that the infinities of 2, obtained
when ¢ alone goes to zero do not form part of the
boundary of U,

PROPERTIES IN MOMENTUM SPACE
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6.5. The Case When the Two Mass Squares ¢ and v
Go to Zero Simultaneously

Equation (38) shows that the only remaining
possibility which might be interesting occurs when
both ¢ and v vanish simultaneously. We can treat
this case with the aid of Egs. (36) and (37). Straight-
forward calculations show that four of the roots for
r and £ are given by Eqgs. (40) and correspond to
z; = MZ. Therefore, they are the same as four of
the roots obtained for v = 0 but ¢ # 0. The remain-
ing eight roots are

1.6 = —(1/c)(e: — @)z — b) &= 2(0D)!/clz. — a),
(74)
me = g * (z32‘-zjv*b)2
X [be: — a)* — a(z; — b,  (75)
2 —b c
Mo10 = _zz{zz —a (@ - b - a

X [(b(z, — 0 —als — B £ (o — a)<%”)*]2},

(76)
@n

The symbol M., is defined in analogy with, e.g.,
Eq. (45b). No assumption has been made about the
relative magnitude of ¢ and » in Egs. (74)—(77). In
particular, these roots agree with the limiting form
of Eqs. (41) for the special case that » goes to
zero faster than ¢. Further, when ¢ is much smaller
than », Egs. (70) and (74) agree. The four roots
given in Eq. (68) correspond to the four roots in
Egs. (76) and (77) in the same limit.

By inspection one finds that only the roots given
in Eqgs. (74) and (77) correspond to very large values
of z,. In both cases the slope of the asymptote in
the z,-plane is given by —(z; — a)(zs — b). As at
least one of the mass squares ¢ and b has to be dif-
ferent from zero because of the inequality a! -+
bt > M,, this slope is never equal to the desired
number —z,2;. Consequently, none of the roots
obtained in this limit can give the boundary of w”.

As at the end of Sec. 5, we illustrate the algebraic
discussion with numerical plots. Figures 4, 5, and
6 show an example analogous to the case illustrated
in Figs. 2 and 3. Here, we have solved the manifold
M(z; a; v) = 0 for 2, but still consider v as an in-
dependent variable while a, b, and ¢ are fixed. As
before, the values of these three latter quantities
are chosen in such a way that one of the points

Mi,12 = —zzzaM:./(zz - a)(za — b)-
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obtained in the limit when v goes to zero lies on
the envelope of the triangle singularity domain. In
Tigs. 4 and 5 we show those roots which correspond
to Eq. (41) in the limit when v goes to zero, while
Fig. 6 shows those four roots which correspond to
Eqgs. (39). In this case we note that one of the roots
in Fig. 4 goes to infinity also for a finite value of v.
Actually, this situation corresponds to the case
discussed in Sec. 6.2 when v becomes equal to ¢. As
before, one finds that none of the roots shown in
these figures can correspond to a singularity on the
physical sheet and outside the domain where the
triangle diagram already gives singularities.

Fi16. 5. Four other roots of Eq.
(38) for the same parameter values
as in Fig. 4. This figure shows those ] .

V-+00
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7. DISCUSSION

The result proved above can be summarized in
the statement that the momentum-space regularity
domain WU’ of the function represented by the
Bergman-Weil integral (1) with thresholds intro-
duced in a simple minded way in terms of lower
limits on the mass square variables a, b, and ¢ is
larger than the momentum space domain U’ ob-
tained from the general physical assumptions (i),
(i) and (iii) listed in the introduction together with
the assumption of regularity when all variables z;
have the same sign for their imaginary parts. This
is a somewhat disappointing result from several
points of view. First, it shows that the most general
funection regular in U cannot be simply represented
with the same representation which works so well
for the domain AU’ obtained with zero thresholds.
Second, our result is purely negative as it does not
suggest any alternative technique to obtain the
domain U” or to represent the most general functions
regular in U”. Of course, a function regular in U’
is also regular in U’ and, therefore, can be repre-
sented in the form (1) but with integrations over
the mass squares a, b, and ¢ which extend from zero
to infinity. The momentum-space support properties
of H(z) which follow from the detailed mass spectral
conditions must then be taken care of by intricate
cancellations between the four terms in (1) and is
not fulfilled for each term separately.

An alternative question of some physical interest
not discussed in this paper is the exact shape of the
domain U’”’, It is remarkable that the slopes of the
asymptotes we have studied here and which have

V-+00-

roots which degenerate to the non- =
relevant root of the ®-manifold in
the limit » = 0. Note that different
scales are used in Figs. 4 and 5.
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F1a. 6. The remaining roots of Eq. (38) for the same
parameter values as in Figs. 4 and 5. This figure shows those
roots which degenerate to the two thresholds (a? &+ b%)2in
the limit v = 0. Note the scale. The point @ n this figure
is the same as the point @ in Fig. 5.

not been proved to be off the physical sheet have all
been given by —(z; — b)(z, — ¢) with b* + ¢! > M,
when we consider 2; as the dependent variable and
by a symmetric result obtained when z, is considered
as the dependent variable. This slope is exactly the
same as the slope obtained in momentum space for
the triangle diagram with thresholds introduced in
a direct way. Consequently, our result does not
-contradict the conjecture that the domain w'”’ for
the Mercedes diagram with simple minded thresh-
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olds is the same as the momentum-space domain for
the triangle with thresholds. To prove this conjecture
one would have to investigate more carefully the
Riemann sheet of the corresponding singularities
and also to discuss the position of the singularities
for finite values of the dependent variable. This can-
not be done without a considerable effort and we
do not feel that the present situation justifies such
a caleulation, The interest in the Mercedes diagram
comes from its connection with the Bergman-Weil
integral and once the complications associated with
nonzero thresholds have been exhibited, we do not
think it is worth while to carry the investigation
further.
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The two-fluid hydrodynamies of Landau and Tisza is related to the thermodynamic Green’s func-
tion formulation of the many-body problem. A specific approximation for the self-energies yields
directly the superfluid hydrodynamics in the limit of slow space and time variation. The approxima-
tion chosen is the simplest possible form for the self energies which includes the effects of collisions
and which also satisfies the differential conservation laws for the mass, momentum, and energy.
Of course these self energies are not adequate for a realistic description of ‘He. Nonetheless the
structure of this model may provide some insight into the exact theory. For example, in the model
employed here the self-energies and Green’s functions obey several integral identities which are
utilized in the derivation of the two-fluid hydrodynamics, and which yield useful expressions for
some thermodynamic quantities. It is speculated that the identities and the consequent expressions
for the various thermodynamic quantities may have a wider range of validity than their derivation.

1. INTRODUCTION

E examine the nonequilibrium behavior of

superfluid systems using the techniques of
thermodynamic Green’s functions. The standard
Green’s function methods''? have been extensively
employed in the determination of the equilibrium
properties of the Boson system, and in the response
to disturbances which vary relatively rapidly in space
and time.*”’

However the calculation of the response of dis-
turbances which vary quite slowly in space and
time, i.e., the hydrodynamic limit, presents special
complications since perturbation theory converges
very slowly in this limit. Chapters 6-10 of Ref. 1
outline a procedure which can be applied to derive
the hydrodynamic equations as the response of the
single-particle Green’s functions to an external field.
In the long wavelength limit, the response is com-
pletely dominated by the flow of conserved quanti-
ties, i.e., mass, momentum, and energy. A qualita-
tively correct description of this flow can only be
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will provide some indications of the structure of
the exact theory.

In a recent technical report, Bogliubov'’ has
described the relation of hydrodynamics to the exact
Green’s funection theory. Our work differs from
Bogliubov’s in that we are restricted to a specific
Green’s function approximation. Thus we do not
prove that the two-fluid hydrodynamic model is
true, but instead attempt to provide a more detailed
insight into just how the hydrodynamics emerge.
In particular we can see explicitly that the super-
fluid velocity v, enters the theory as the gradient
of the phase of the condensate wavefunction, while
the normal fluid velocity v, enters as a parameter
in the solution of the detailed balancing relation.

To obtain the two-fluid equations explicitly we
make use of a set of Green’s function identities
which we believe are new. These ‘‘identities” are
manifestly true in our approximation but probably
have a wider range of validity than implied by our
very simple approximation for the Green’s function.
Further discussion of this point must await further
study.

In Sec. 2 of the paper we define the approximation
for the condensate wavefunctions (¥(1)) and for
the single-particle Green’s function. Included in this
section are the exact, real time equations of motion
for the system. In Sec. 3 these equations are special-
ized to slow space and time variation, and are then
taken as the generalized Boltzmann equations in
the sense of Kadanoff and Baym.' In this section
we must overcome one technical difficulty. As pointed
out by Bogliubov'” and others'*''® the phase of the
condensate wavefunction is rapidly varying in space
and time, and must be treated with some care.
A gauge transformation is made so that the rapid
variation can be treated in a consistent way. In the
course of performing this guage transformation we
are led to introduce v, and the local chemical po-
tential as the space and time derivations of the
condensate phase.

In Sec. 4 we show that the conservation laws
for mass, momentum, and energy can be correctly
obtained from the Boltzmann equations of Sec. 3.
Useful expressions for the energy density, energy
current, and the stress tensor are obtained by using
the Green’s function identities mentioned above.

A procedure analogous to that of Chapman and

17 N. N. Bogoliubov, The Question of the Hydrodynamics
of the Superflurd Liquid (Dubna, 1963). We wish to thank
Dr. Bogoluibov for sending us this copy of his work.

18 The analogous point for a superconductor was made
by V. Ambegaockar and L. P. Kadanoff, Nuovo Cimento 22,
914 (1961).
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Enskog" is used in Sec. 5 to obtain what we term
the “local thermodynamic equilibrium” solutions of
the Boltzmann equation. These solutions are correct
in the hydrodynamic limit of extremely slow space
and time variation of all physical quantities, i.e.,
for wr < 1.

The local equilibrium solutions are inserted into
the conservation laws in Sec. 6 to obtain the two-
fluid hydrodynamic equations. In the course of this
analysis we use the identities of Sec. 4 to obtain
several new expressions which give microscopic iden-
tifications of the quantities appearing in the two-
fluid equations. A particularly useful expression for
the entropy is thereby obtained.

2. GREEN’S FUNCTION APPROXIMATIONS

The superfluid system is conveniently described
in terms of the spinor wave field operators™:

¥(1) = (‘“”), ¥'(1) = YO, @

¥'(1)
which are used to define the correlation functions
h(1, 1) = —i@OXE' 1)),
71, 1) = —iEOY'e)), @2)
g°(1, 1) = —i(¥ (1) (1)),

7, 1) = g3, 1) — (1, ).

Here ¥(1) denotes the spinor wave field operator
at the space-time point (r,, ¢,). The correlation
functions are defined for real times as in Chap. 8
of Ref. 1. These functions then obey the equations
of motion

" dTig, D) — Zaet, DIFA, 1)

= [daira, DRd, 1)~ [ di 22, Dad, 1),

" i1 2 Dig'd, V) — Zwed, 1)

- f i1 a1, D2, 1')—f“' di a, Drd, 1),
- e @.3)

©
-

[ 1@, D = Swet, Dir, 1)

- f " i@, DR, 1),

1¥ S, Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases (Cambridge University Press,
London, 1960).

20 Y, Nambu, Phys. Rev. 117, 648 (1960).
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./;m d1 (1, I){g;;l(i-; 1) — SHF(IJ 17}

= — [ dina, v, 1),
where™

61, 1) = { @2 P +m,—u<1)} 51, 1),

24

The limits on the integrals of (2.3) are those for
the time integral. The remaining integrations are
over all space. In these equations, (1) is an external
potential coupled to the density which serves to
drive the system away from equilibrium, g, is the
constant chemical potential for the system, and +**
is the Pauli spin matrix

@ _ (1 0)
T “(0—1'

Zar and Sgr are the Hartree-Fock self energies for
7 and h, respectively. These are shown diagrammat-
ically in Fig. 1 and are given algebraically by

Zusll, 1) = § [ 4200, D tr 62, Do, 1)

+al, L, 1, g 5

Sur, 1) = £ [ d20(t, Dt o, 23001, 1)

+ (1, 1§, 1),
where tr denotes the matrix trace. We have adopted
the convention that at equal times, (J(1yt(1"))* =
Y1(1)¢¥(1). The interparticle potential is v(1, 1’) =
v(r, — 1. [)8(t, — &) s0 Tgr and Sy are local
in time.

'
I
|
I

Zpellt )'Q ;ZL%ZL; "——"——‘ + (NV\ /V\N

O

F1e. 1. The Hartree-Fock contributions to the self-energies,
11— — — denotes the two-body potential v(1, 1), o A
denotes the single-particle condensate propagator h(1, 1’),
and ;———— the propagator § (1, 1),

# 'We use units in which # = m = 1.
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In Eqs. (2.3) we have defined
rq, 1) = z>1,1) — =<, 1),
¥(1,1) = 81, 1) — 81, 1),
all, 1) = 51, 1) - 5@, 1),

where Z* and S% are the remaining parts of the
self energies of § and h, respectively.

In our approximate analysis we choose = and S
to be the simplest expressions which contain colli-
sions between particles and satisfy the laws of
conservation of mass, momentum, and energy. We
include terms of second order in the interparticle
potential but exclude exchange terms. This choice’
is shown in Fig. 2 and has the analytical form

_g j ) f @3 (1, Zp(t’, 3)
X {73, 1)t [5G, DFRE, 3) + 7°G, DA, 3)

+ 13, DFE, 3 + rA, 1)t [556, DRE, 3)]( },7)
2.

(2.6)

2(1, 1) =

8(1, 17) = deifdiva,‘z‘)v(l', 3)

X 31, 1)t [5G, DFE, 3. (2.8)

This approximation has two obvious faults. First
since it is only a portion of the second-order term
in a perturbation expansion, it cannot be expected
to be correct at He 11 densities. Nonetheless, from
the structure of our result we hope to obtain some
insight into the structure of the He1r theory.
Secondly it does not satisfy the Hugenholty-Pines®
theorem, so the equilibrium single-particle function
g will not contain the phonon spectrum at low fre-
quencies and wave number. However as pointed out
by Hohenberg in Chap. 4 of Ref. 9, a properly
gapless response can be obtained in the density-
correlation function even from a § which has a gap,
if the approximation is conserving,.

3. THE BOLTZMANN EQUATIONS

We specialize the exact transport equations of the
system (2.3) to the case in which the external

reretele

| b anndy

Frg. 2. The remaining parts of the self-energies in the
approximation of this paper. The notation is the same as
that of Fig. 1.
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potential varies slowly in space and time. If the
external potential induces a disturbance of wave-
length much longer than thermal wavelengths and
frequencies much smaller than characteristic particle
energies, then in the normal system ¢3(1, 1°) can be
expected to vary slowly as a function of

R = 3(r, + 1), T=4§t+t4) @I
and be peaked about the zeros of
r=1€ -—1I, t=1# — t.. (3.2)

This type of variation was exploited in Ref. 1. to
derive a ““generalized Boltzmann equation” for the
normal gystem,

However in the superfluid there is a special
difficulty. If (¥(1)) is rewritten in the form

R R B
then
(1, 1) = _":[”o(l)]ie"“’””

X (L4 7D OOt (3.4

where 71, and o are real. In equilibrium the gradient
of ¢ is the superfluid velocity, and the time derivative
of ¢ is related to the chemical potential’*'*” Extend-
ing these identifications to the nonequilibrium sys-
stem, we identify

V() = v,(1),

dp(1)/at, = —[u(1) — po + 3i(D)],

where V,u, = 0. It can then be seen that (R, T)
is a rapidly varying function of (R, T) and induces
anomolously strong (R, T') variations in the off
diagonal elements of A and thus in g. So k(1, 1)
in the form (3.4) and the related §(1, 1’) will not
satisfly a Boltzmann equation like that of Ref. 1.
For this reason we perform a gauge transformation
to remove the strong R, T-dependence of ¢.

Consider the gauge transformed correlation func-
tions

3.9)

’ o i@ {1)ris} MLie(17yr(®)
h(1,1) =¢ B, 17e ' @)

'g‘é(l, 1') - e—iw(l)r(a)gz(l’ 1’)8"’(11)7“).

Since we expect the physical quantities »', §, v.,
and p to vary slowly as functions of (R, T') we can
write generalized Boltzmann equations for these
gauge-transformed correlation functions. Notice that
h’(1, 1’) has the form

K, 1) = —ingPA + 7))} 3.7
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and we interpret § tr A’(1, 1’) |;-~, as the probability
that a particle, added to the system at the space—
time point {(ry, t,), enters the condensed state.

The gauge transformation leaves Eqs. (2.3) form
invariant if g~4 is replaced by

i 11 = dp O de(l)
g% (1,1)—{’1,1 ot ot

+ 4V, + V()77 + ua}aa, 1. (3.8)

Since we shall hereafter use the gauge-transformed
functions exclusively, the primes will be dropped
to simplify the notation. We have also dropped the
external potential in (3.8). Our analysis can then
be viewed as a description of the system as it re-
turns slowly to equilibrium after being disturbed
by the external potential.

To obtain the generalized Boltzmann equations
consider the change of variables (1, 1) — (r, {; R, T)
according to

921, 1)
= 9E =1, 8 —
= E(r’ i; R, T)

[ dpde . .
= —1 f é’ry exp (ip-r — )o@, w; R, T).

s 3 + 1), 306+ 4]
3.9

Notice that it is again possible to split ¢ as
R=0+h

where, if we negleet second derivatives of n,(R, T,

h(p,;R, T) = n®, T)(1 4 =)(@r)" 8(p) 8(w). (3.10)

The generalized Boltzmann equations are now
obtained as the Fourier transforms of Eqgs. (2.3)
for the case in which the variation of g%(p, w; R, T)
in R and 7T is very slow. In particular we assume
that g' and the self-energies vary very little as
R is changed by a characteristic excitation wave-
length or T is changed by an inverse excitation
energy. By using a procedure exactly analogous to
that of Ref. 1, Chap. 9, when we take proper account
of the matrix character of the correlation functions
we find

'3 + 216", ¥ =Re 35 + 3*Re j
— S0 — %] + 5 (Re 2, %] + (2, Re 7))
+ {[r, §1 - [2%, o}, (3.11)

O N
795" +3[6% 0'] = i Re 3 + Re 2°
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a2 a2 2 The cumbersome matrix form of (3.18) and (3.19)
2 [o2 +5 {[g yRe 2] + [Re g, 2°]} is necessary to avoid the constant term in the lower
— 1475 _ 2 right-hand element of §(, ») which brings in an
HI, P] [e, 2%}, ©.12)  nwanted term
o'h o', k] = Re Sh d’p’ dw’
go b+ 5 [go ] = Re o ) tr 301 — T(s))g<(p;w/)]
—57h + 3 [Re 8, Kl + 1, A, (3.13) = YR, T)¥' R, T))
. = ("R, TI¥R, I)) + &R).
hgs' + % [h, 9’1 =hRe S The remaining terms in our self energy approxima-
tion have the form
+ h’Y + = [h Re S] l[h, 'y], (314) Ez(p w) fds // dw’’ dsi’ da
! 2 (27r) 2n)* 2n)*

where all quantities depend on (p, w; R, T) and

ga (0, w;R, T)
=[o — p-v.(R, 1]7¥ — 3" + u(R, T). (3.15)

In these equations we have used the generalized
Poisson brackets

_9XaY XY
[X, Y] T 8w T 0T dw

+ VXV, Y — V,X: VY (3.16)
and have defined
Re 8 = Sur(p) + Re S(p, w),
Re 2 = EHF(p) + Re 2(p, w), (3 17)
do' T ¢
Re 29, o) = P [ G2 129,
- do’ 4
Re jp, o) = P | 5 Z(p—’ w)

where P denotes the Cauchy principal value.

The Hartree-Fock contributions to the self en-
ergies have the form [with the (R, T) dependence
suppressed]

EBF(P: w)
=3 [ TB55 00 = 00 [0 + <)@, )]

+ ¢ f o 'v(lp — PP tr [@ + +@)g @, )]

+ 3+ ), DI —

+ 31 ~ )@, )R + )] (3.18)
SHF(D) w) = 2:HF(p} w)
— i [ERA ke, o). (3.19)

(@)t

X @) —p—p + ) —&—w + )
X [(lp” — B)P{FE @, o) tr [F@”, 0")5(, &)

+ F@7, D, &) + h@”, o' NF®, &)]

+ h, o) tr [0, o")F®, @)}, (3.20)
_ 1 [dpdy [dp’d [dPde

S0, = —5 [ @) f @t J @)

X @n)fs@ — B — 0 + P — & — o + @)

X [o(lp” — BNI’5R @, ) tr [P, ') P, &)].
(3.21)

4. CONSERVATION LAWS AND IDENTITIES

The differential conservation laws for mass or
particle number, momentum, and energy can be
obtained by various methods and have as many
forms. Since the result of each procedure is correct
in the same domain as the Boltzmann Egs. (3.11)
to (3.14), the results must be equivalent. We invoke
this equivalence in comparing two of these methods,
not only to obtain the conservation laws, but to
show that several identities which are important for
our analysis appear in a natural way.

The conservation laws can be obtained from the
exact transport Egs. (2.3) in the limit of slow space
and time variation, or equivalently, from the gen-
eralized Boltzmann equations themselves. It is also
possible to obtain the conservation expressions in
terms of a “conserving” two-particle Green’s fune-
tion g,. A “conserving” g, is one which leads to a
conserving approximation for g. This will always
be true if g, satisfies®

[ dl 6, Do, 1) = 51, 1)

+ é f dl v(1, T)gz(l, 11, T),
(4.1a)
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[ @ o1, D@, 1) = 51, 1)

+ % f dl g,(1, 1; 17 (1, 17,
and
g.(1,2;1/,2) = 9,02, 1; 2/, 1"). 4.1b)

In Eq. (4.1a) the integral over 1 is an abbreviation
for a space-time integral plus a trace over the spinor
variables of 1. Whenever the time ordering in g,
is ambigous we pick the ordering which gives the
density of particles.

Equations (4.1a) are just the exact transport
Egs. (2.3) and condition (4.1b) is satisfied by the
two-particle Green’s function corresponding to the
special self-energy approximation (2.5), (2.7), and
(2.8). g, is shown diagrammatically in Fig. 3. We
outline the procedure leading to the momentum
conservation law and its associated identities, and
merely state the results for the energy and number
conservation laws.

Following the approach of Chap. 10, Ref. 1, the
momentum conservation law, written in terms of the
conserving two-particle Green’s function is

'5% lov. + jole = — zE 5’%‘1 [o)x(v.): + @ )ulo)

+ @Gk + (Téa))zk + (Tém)m], (4.2)

where we have suppressed the (R, T) dependence.
In Eq. (4.2) joand T, = T} + T'Q are, respectively,
the mass current and stress tensor viewed in a
coordinate system moving with velocity v,, and p
is the total mass density. These are conveniently
expressed in terms of the Green’s functions by

. 2" 2 2Arann ARAANR
0,022 - .
'

[NYa% "% ANANA L

FEV VY NP VVI VY

[ |

AAN AANY

2 .\ 2'" N A —2
| 1
[V 1 " . i

Fre. 3. The diagrams for the g» which generates our approxi-
mations for T and 8.
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p=3Tr+ )@, )
=n, + 3 Tr §°(p, w) + const, (4.3)
jo = ¥ Trp 4+ »®)g*(p, )
=3 Trpr®§(p, ), (4.4)
(To™)u = 3 Trpepe(l + 7%)g%(p, @)
= 3 Tr ppi7°(p, ) + const’.  (4.5)

In these expressions Tr = tr [ d’pdw(27)™%, and
the constants are independent of R and 7. Finally
the potential term in the stress tensor is given by

= )l — 1)

(T(gs))kl = gtr f d Ty @

11'1 - fzz
& [2
3(1:1 9:1,2;1,2) liec 4.8)
1 1=R,T*

Alternatively we can obtain the momentum con-
servation laws from the generalized Boltzmann equa-
tions. Take the sum of the second equation in (3.11)
and (3.13). Subtract from this the sum of the second
equation in (3.12) and (3.14). Multiply the result
by p and apply Tr. This yields a momentum con-
servation law exactly in the form (4.2) except that
we find the alternative expression for Vg-T@

Ve TP = 31 Trp{[Re 2, §°] + [Z5,Re j]
+ [Re S, h]} + 3 Trp{2”§° — =<F°}. 4.7

Since the two different paths must lead to the same
result, the expression (4.7) must be the identical
to the divergence of (4.6). We are thus led to look
into the structure of (4.7) to see if this equivalence
can be demonstrated.

The left-hand side is of course proportional to a
spatial derivative. In our approximation, £ and £<
contain neither space nor time derivatives to first
order in (Vg, 8/8T). Hence the final trace on the
right-hand side of (4.7) contains no space-time
derivatives. By writing

[X’ Y] = [Xy Y]w.T + [XJ Y}p.Ra
aX Y 94X oy
X, Yloor = 3057 ~ 3T b6
X, Y]r = =V, X-VrY + VX'V, Y,

it is possible to divide the first trace of (4.7) into
two parts, one containing only space derivatives
and the other only time derivatives. The obvious
way that we can satisfy (4.7) would be to have the
terms containing no derivatives cancel out,

Trp[Z>§° — 2°§]1 =0,

4.8)

4.9)
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and those containing only time derivatives also
be zero,

Trp{[Re Z, §"lu.r
+ [25,Re §lo,r + [Re 8, hlu,r} =0,  (4.10)

while the remaining terms containing explicit space
derivatives add up to a divergence as

Ve Ti” = § Trp{[Re 2, §).x
+ [Z5,Re flor + [Re S, hlm}.  (4.1D)

The arguments leading to (4.9)—(4.11) are only
speculative at this point, but represent the motiva-
tion for writing them down and considering them
to be a reflection of the momentum conservation
laws in the superfluid system. The next step is to
check these results. The approximations (3.18)-
(3.21) for the self-energies are inserted into our
proposed relations, and after considerable algebra
(4.9)-(4.11) are verified. That is, the cancellation
indicated in (4.9) and (4.10) does in fact oceur,
and the right hand side of (4.11) is seen to be a
total derivative. This derivative is just what emerges
when our approximate g, is inserted into (4.6).

The identities (4.10) and (4.11) are quite im-
portant in our discussion of the hydrodynamics of
the two-fluid system. They appear to fail for high
temperatures and strong interactions,* but we spec-
ulate that they may be correct whenever the quasi-
particle approximation is valid, i.e., for sufficiently
low temperatures or weak interactions,

A rather similar, but more complex argument
motivates the appearance of identities connected
with the differential energy conservation law. In
terms of the two-particle Green’s functions we obtain

5%1' {%Pvf + joev. + K, + V}

= —Vkr* {Va[%Pvf + jov. + Ko+ V] + %‘Ufjo

+ Torv, + j50 + §%.)- (4.12)
The left-hand side of (4.12) is the time derivative
of the energy density and the right-hand side the

divergence of the energy current. V is the potential
energy density

V= 3T [ dTo(t, Dealt, 1, D) fomer, (4.19)

while K, is the kinetic energy density in the coor-

2 We are indebted to Dr. G. Baym for pointing out that
these identities may not be exact to all orders in the potential
at finite temperature. In fact trouble occurs in the third-order
terms. However, according to R. Craig, the identities become
increasingly accurate as the temperature approaches zero.
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dinate frame moving with velocity v,,
Ky =3Tr {1 + +®)
X [ —pv) + ulg, )} —2V. (4.19)

The term jz, = j'& + j%, where B, = K, + V,
is the energy current viewed in the moving frame.

The terms are given by

s(a)

8 = 3 Tr (1 + »)ple — p-v. + W5 (@, &) (4.15)

and

(B __
JEo_

——1—16’1‘1' ¥ fdf o(1, D) @1 —1,)

X [Vi+(Vi — Vi)g:(1, 1; U1y ociom, 7. (4.16)

The energy conservation law obtained from the
Boltzmann equation does not seem to have the
form (4.12). However, after considerable manipula-
tion, it is seen that the form is the same as that
of (4.12) if the following identities are obeyed:

Trw{Z"§° — 2§} =0, 4.17)
%‘f — 31 Tro{Re 2, §5lo.z
+ [Z%,Re §lo.r + [Re S, kl..7}, (4.18)
Ve'j% = —3Trw{[Re Z, .z + [Z°,Re §l.r

+ [Re 8, klp.z} — Ve {TP.v, — Vv,}.  (4.19)

Then making use of our explicit expressions for the
self-energies and g, we discover that (4.17)—(4.19)
are indeed true.

Equations (4.18) and (4.19) are two more identities
which will prove important in our discussion of the
two-fluid equations. They are related to the energy
conservation law in precisely the same way as (4.10)
and (4.11) are related to the momentum conserva-
tion law.

For completeness we note that connected with
the number conservation law

22+ Vae(ov. + ) = 0 (4.20)
are the identities
Tr +® {Re Z, §]u.z
+ [Z5,Re §flu.r + [Re 8, klo.r) =0,  (4.21)
Tr r”{[Re Z, §"l.»
+ [25,Re §lo.r + [Re S, hlp,z} = 0. (4.22)

These identities ensure the gauge invariance of the
previous identities, but will not be important in
our later work.
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5. LOCAL THERMODYNAMIC EQUILIBRIUM
SOLUTIONS

The Boltzmann equations of Sec. (3) are valid
only if § and & change slowly as R varies over
distances comparable to characteristic particle wave
lengths and as T varies over times comparable to
the characteristic inverse particle energies. We now
investigate the domain in which § and & vary slowly
over distances comparable to the mean free path
of a typical excitation and times of the order of the
mean free time of such an excitation. Mathematically
we require that the space and time derivatives in
Eqs. (3.11) through (3.14) be small compared to
those terms involving no such derivatives, e.g., that

[g;‘ ~ReZ +§r, g<]

& (g;‘ —Re= + % r)g<. (5.1)

This hydrodynamic domain (wr << 1) usually has
a much smaller domain of validity than that of the
generalized Boltzmann equations since the excita-
tions are rather sharply defined in energy. However,
very near the lamda point, the Boltzmann equations
and hydrodynamic description of the system may
have the same ranges of validity, i.e.,

933

dw 0T (5.2)

Vs Vgt K g%, AR

In the hydrodynamic limit the generalized Poisson
bracket terms, containing space and time deriva-
tives, are negligibly small and Egs. (3.11) and (3.13)
reduce to

[931 —Re S + g'yilh =0, (5.3

6" — Re 215 — 2*Re § = —3 [27° — =°7].

(5.4)

Since A(p,w) contains delta functions in momentum
and energy (see 3.10), Eq. (5.3) becomes

[M(R) T) —Re S(07 O;R, T)](]- + T(l))

= =570, ;R, A + ). (55)
Before considering the consequences of (5.5) further
we first turn to Eq. (5.4).

In the usual theory for the normal system, Egs.
(5.4) would have a solution in which the spectral
weight function a(p, w; R, T') would be determined
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by equations exactly analogous to those of the
equilibrium theory, i.e.,

a(p, w) = i{[ng —ReZ + % I‘:|

. -1
— [g&’ -—ReE——%I‘] }

Then since a(p, w) satisfies a dispersion relation,

. _ dw’ a(p, o)
Re jlp,w) = P o w—

. -1 : -1
{[QEI—Re E+§ I":| +|:g§'—Re E-——% I‘] }

6.7

It can be seen that (5.6) and (5.7) explicitly satisfy
(5.4) rewritten in the form

[go* — Re Z]la = T'Re §,

if we allow, a, g0, Re 2, T, and Re § to depend
on R and T. Also in the normal system theory the
terms on the right-hand side of (5.4) must vanish,
This is the mathematical statement of detailed
balance. If we consider in the superfluid system
that the right-hand side of (5.4) represents the net
rate of change of the density of particles with
momentum p and energy « at (R, T) then in local
thermodynamic equilibrium

2>(p’ w; R, T)g<(p7 w; R’ T)

(5.6)

D |t

- 2@, ;R, 7@ «;R,T) =0. (5.8)
Since we can always write -
i@ «;R,T) = f@, R, Ta, «; R, T), .9)

g, «;R, T) = (1 + (@, »; R, T))alp, w; R, T),
we find that (5.8) can only be satisfied if the detailed
balancing relations

> . _— . .
E (pvaR, T) - f(P»w;R:T)P(P,w;Ry T)s (510)
E<(p: o;R, T) = (1 + f(P, w; R, T))F(P, w; R, T):

are satisfied. Detailed study of the structure of the
approximation for 22 in Eq. (3.20) indicates that
a general expression for f(p, w; R, T') is

f, o; R, T)
= {exp [BR, T)(w — p-v®R, T)] — 1]".

By analogy with the equilibrium solution we in-
terpret B(R, T) as the local inverse temperature
in energy units, and v(R, T) is an arbitrary vector
with dimensions of velocity. We shall find in Sec. 6

(5.11)
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that v(R, T) can be interpreted as the normal fluid
velocity.” The usual normal system f(p, w; R, T)
contains u(R, 7T) in the exponential. This term is
not present in (5.11) since the number of excitations
is not conserved. The macroscopically occupied con-
densed state acts as a particle sink. Expressions
(5.6), (6.7), (5.9)~(5.11) define the solution to the
Boltzmann equations for 32 in local thermodynamic
equilibrium and allow simplification of (5.5).
Using (5.9) we see from (3.21) that

v©0,0;R,T) =0

and since Re S(p, w; R, T) can be shown to have
“® component

no r
Re 8(0, O;R, T) = Re S,(0, O; R, T)r®

+ Re 8,(0, O; R, T)7™ (6.12)

because Re S;(p, w; R, T) is an odd function of
(p, w). Then (5.5) reduces to

uR, T) = Re 8,0, 0;R, T) + Re S,(0, O; R, 7).
(5.13)

We view this equation as determining (R, T) as
a function of the parameters of the system g(R, T),
v;(R, T), 'R, T), and p(R, T).

We now have the conservation laws, identities,
and local equilibrium solutions needed to obtain the
two-fluid hydrodynamic equations for the super-
fluid system.

6. THE TWO-FLUII? THERMODYNAMICS

The two-fluid hydrodynamic equations'® are the
following set of relations:

(A) The energy, momentum, and number con-
servation laws (4.2), (4.12), and (4.20).

(B) A set of equations obeyed by the superfluid
velocity v,. These are a direct consequence of the
identifications (3.5) which imply

I¢]
o7 Ve = —Valk + 37, (6.1)
curl v, = 0, (6.2)

in the absence of vortices.

(C) A set of thermodynamic relations obeyed by
the densities and currents of conserved quantities.'®
These are, first of all, that j,, T, jz,, and E, each
depend upon u(R, 7T), SR, T), and v,R, T) —
v.(R, T), but not upon v, or v, individually. In
particular, the mass current must be proportional

23 J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).
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to (v, — v,) as
jo = pu(Va — V) (6.3)

with p, being a function of &, 8, and (v, — v,)%
Also, the stress tensor is required to have the form

T = (Ttga) + Téﬁ))kl
= Pakl + pn(vu - vu)k(vn - vc)l- (6'4)

That the P in (6.4) has the physical significance
of the pressure is indicated by the thermodynamic

relation
dP = pdu 4 psdb + jo-d(v, — v.), (6.5)

where 6 is the temperature and s is the entropy
per unit mass defined by

ps = Ey + P — up — p(v. — V,)°.  (6.6)
Finally the energy current must be
je. = [Eo + P — ppJ(va — V.), (6.7)

where p, = p — p, is the superfluid density.

To complete the description of the connection
between our approximation and the two-fluid hydro-
dynamics, we must indicate how our equations imply
the relations (6.3)—(6.7).

The first question to be considered is the depend-
ence upon v, and v,. Notice that ¢”(p, «’) and
g<(p, «'), with o = w + p-v,, are propagators
viewed in & system moving with velocity v,. We
should therefore expect that the propagators depend
only on (v, — v,), not on v, and v, independently.
To check this, note that g;'(p, @ 4+ p-v.) is in-
dependent of both v and v,. Notice also that the
expressions for the self-energies remain form in-
variant under the change of variables w — o' =
w + p-v,. The only function which now contains
any dependence on v or v, is f(p, w; R, T) which
becomes

1
exp [ —p-(v—v)]—1

f(p, ') = f(P, w‘l‘P'V:) =

So g*(p, ') depends only on (v — v,). We can then
identify v with the normal fluid velocity v.,.
Expressions (4.3)-(4.5), (4.10), (4.11), (4.14),
(4.15), (4.18), and (4.19) guarantee that all explicit
reference to v, in p, jo, To, E,, and jg, disappears
when the transformation w — o’ = o 4 p-v, is
made within the Green’s functions. v, only enters
via f(p, ') which depends only on (v, — v,). Thus
we see how the physical quantities lose their de-
pendence on v, and v, and become functions of the
relative velocity. In our evaluation of these physical
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quantities we exploit this dependence by replacing
v, in g;* by zero and letting v in f(p, w) be (v, — Vv,).
Next we show how the thermodynamic results
emerge from the identities of Sec. 4. Consider first

the momentum density, From (4.4)
3jo

aT = % Tr p[w,r(3)

’ g<(P: )]

=3$Tr P{[g«?l, §er + (907, hlu,z}
since g;* = wr®® — (p°/2m) + u. Using the identity
(4.10) this can be written as
ijg—-lTr {[go* —Re =, §°
aT_'2 Pilgo e ’g]w.T
— [25,Re §lu.r + [go* — Re S, hl..r}.

The term involving A vanishes because b « 6 (p). After
an integration by parts we obtain

% _ 31 { g, oz* }

aT aTzT”’ (90" = Re 2] 550 + 55 Re [
6.8)

Since 8/dT refers to changes in v, — v,, g, and 8,

and the trace in (6.8) vanishes at v, — v, = 0,
the equation may be integrated with a vanishing
constant of integration. Because §< = faand < = T,
the momentum density is

oT ~

e Re g}

_1 dRe §!
10—2Trpf{ o

- —Trp aere j, (6.9

where we have used the local equilibrium result
Re §'a = TRe §.
If we define

~—1

§'=g'—ReZ — 5’ T, (6.10)
and notice that g;*, Re Z, and T are each Hermitian
matrices in the 2 X 2 7 space we can rewrite the

term inside the curly bracket under the first trace
of (6.9) as

dRej!  oT ~}
tr {————aw a= 5 Re §

= 2tr {Im log [— 7§ @, wy}.  (6.11)
The —r® has been inserted inside the logarithm
in order that this term will vanish at w = — o,

This permits an integration by parts in the first
term of (6.9) and with the definition
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X@, @) = —2 Imlog [—+“§7(p, «)]

— I'(p,w)Re jlo,w)  (6.12)

we can write
§o = —Tr[ "cf X] = 0¥, — V). (6.13)

[We note in passing that our identification of p,
differs from that of Gétze®™ who essentially defines
= p — n,. This is incorrect because it completely
neglects the depletion effect.’]
An almost identical argument applied to jg, =
i) 4 2 defined by (4.15) and (4.19) indicates that

jg. = =3 Tr [w(V,NX] + gio. (6.14)

The explicit term containing x4 comes from the u
in (4.15). Since V,f = —(v, — v,) df/dw, Eq. (6.14)

implies that

. 1 )

Jg, = {_Z_Tr [0) 55 X] + ”'pn}(vn - vl)'

The analysis of the energy density and the stress

tensor follow along exactly the same lines. From
(4.14) and (4.18),

(6.15)

-l e 2x]}
+3 Loy [an] 1 “aQTE’ (6.16)
where E, = K, + V. From (4.5) and (4.11)
PR S
63T a(g, X+ dup gg; aRl .

Since we can interpret 3/d7 and Vg as producing
changes in the thermodynamic parameters v, — v,,
8, and u, Eq. (6.16) may be written as a relation

between thermodynamic differentials
Y X]} + 3 Tr [@NX] + u de

e
(6.18)

and we also see that the stress tensor is of the form
(6.4) with

dP = =} Tr [@N)X] + pdp.

The differential of f is
df = —af{ -d(v, — Vv,) + 4 [w —p (Vo — V.)]},
(6.20)

dEo =

(6.19)

2 W. Gétze, Z. Physik 117, 300 (1964).
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so that (6.19) implies that dP has the form (6.5)
with the entropy per unit mass s given by

pbs = 3 Tr {:—i [0 — p-@. — v,)]X}. 6.21)

At this point, only Egs. (6.6) and (6.7) remain
unverified. By adding (6.18) and (6.19), and using
the definition of the entropy we find

d{E, + P — up — pbs — p,(v, — v,)’} = 0. (6.22)

The enthalpy, E, + P, is then defined by integrating
(6.22) and choosing the constant of integration to
be zero. We then obtain Eq. (6.6). The last step
is to notice that (6.21) and (6.15) imply (6.7). We
nally conclude that the identities of Section (4)
include all of the thermodynamies of the two fluid
model.

ACKNOWLEDGMENTS

We would like to thank Prof. G. Baym, R. Craig,
Dr. P. Hohenberg, Prof. P. C. Martin, and Prof.
D. Pines for their extremely useful and constructive
critisiem of the work described here.

APPENDIX: QUASI-PARTICLE EXPRESSION
FOR THE ENTROPY

In this appendix we investigate the relationship
of Eq. (6.21) with the standard quasi-particle expres-
sion for the entropy. To facilitate the discussion,
we handle v, — v, in a slightly different manner
than that used in Sec. 6. In Sec. 6 we took g;' =
wr® — (p*/2m) + p and inserted the v, — v,

dependence via f. Here we change the origin of w

by letting w — w + p+ (v, — v,) so that
2
=t pE - =2y @A

and then
fw) = 1/ — 1) (A.2)

independent of v, — v,. With this change of variables
Eq. (6.21) becomes

ots = ~Trw 2L (Im log [~ 7] + T Re g}.
A3)

The quasi-particle approximation is obtained by
considering I' to be very small for small values
of w, where 8f/dw is large. Then —7®§™" is essentially

real with only an infinitesimal positive imaginary

J. W. KANE AND L. P. KADANOFPF

part. To write this in a convenient form, we de-
compose Re ¥ into its matrix components. Using
the fact that the +® term may be shown to vanish

2P, @) = [0 + p*. — VIl — Z(p, 0)]r®
+ x(@, 0)7 + ¢, ).

After some manipulation (A.3) reduces to

(A4)

pbs = —f @) w—tIm {log ZA, + log ZA_}
(A.5)

with

A, = ~[o+ p (. — V)]

2 2 Y
I [ PR
where in (A.6) the square root is taken to be positive.
Since Re Z(p, w) is positive for small w, the imaginary
parts of the logarithms in (A.5) are determined by
the sign of A. Because of the simple structure of
the integrand in (A.5), it is useful to define the
quasi-particle energy E(p) (assumed unique) to be
the value of the square root in (A.6) which for a
given p makes A, = 0;ie.,

E@) = {2'2@, w)[ép;—; — p + x(, w)]z

3
- Z—z(P; w)d’z(Ps w)} A7)

w=E(p)—p*(Va—V4)*

From this definition and from the fact that ¢, Z,
and x can be shown to be even under the interchange
(p, @) — (—p, —w), (A.5) reduces to the simple
form

o = - G5 55 oy @9 A

so that we obtain the standard result
3
=~k [ &5 1) log 1)
— [1 4 fw)] log [1 + f(@)]} omrm1~p+cva=vars

where k is the Boltzmann constant.

Precisely the same argument can be applied to
the derivation of the other quasi-particle results.
For example Eq. (6.13) implies

(A.9)

o= [ (%:?)_gpf[E(p) ~ p[v. — v.)]. (A.10)
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In a previous paper a certain new probability distribution function g(z) relating to blackbody
radiation was introduced. In the present paper the properties of this function for a general radiation
field are studied. Unlike the phase-space distribution function of Sudarshan (1963), this function is
nonnegative and is an ordinary function. A series expansion for ¢(z) is given, and it is shown that
the series is absolutely convergent for all eigenvalues z of the destruction operator. It is also shown
that the density matrix in the Fock representation can be uniquely determined from this probability
distribution function, and vice versa. The relation between g¢(2) and the Sudarshan’s phase-space

distribution function is discussed.

INTRODUCTION

T has recently been pointed out by Glauber' that

a thorough quantum treatment as the basis of
the theory of measurement of the electromagnetic
field is desirable. Using quantum electrodynamics he
has developed the formal properties of electromag-
netic field correlation functions by taking an ap-
propriate definition of a coherent state.”*> An in-
teresting representation of the density matrix for
deseribing the statistical properties of a radiation
field has been introduced by Sudarshan*® and
Glauber.? Making use of the overcompleteness of
the eigenstates |2 of the photon destruction operator,
Sudarshan has shown that any density matrix can
be written in “diagonal” form with the state vector
le) as base (Glauber’s P representation). Sub-
sequently interference effects between independent
light beams have been discussed using Sudarshan’s
representation.® Also the stationarity and the ran-
dom phase condition relating to the representation
of the density matrix have been investigated.”"®
However, the validity of the results obtained in
these investigations is still open to question, since
the convergence of the Sudarshan representation
of the phase-space distribution function has so far
not been proved. The main purpose of the present
paper is to investigate some of the properties of

* This research was supported by the Air Foree Office of
Scientific Research.
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Nagoya University, Nagoya, Japan.
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a certain new related probability distribution func-
tion g¢(z), which is free of some of the shortcomings
of the Sudarshan representation. This function ¢(z)
is essentially defined as the expectation value of
the density matrix with respect to the eigenstate
of the photon destruction operator. Unlike the
phase-space distribution function of Sudarshan, ¢(2)
is nonnegative. It is shown that the matrix elements
of the density matrix in the Fock representation
may be uniquely determined from g¢{z). The relation
between g(z) and the phase-space distribution fune-
tion of Sudarshan is also discussed.

THE PROBABILITY DISTRIBUTION FUNCTION

Let us consider the electromagnetic field consisting
of single momentum-spin state. Following Sudar-
shan,* we begin with an outline of the representation
of canonical creation and destruction operators. If
a and a' satisfy the canonical commutation relation,

la,a] = 1, )

every irreducible representation is equivalent to the
Fock representation in terms of the states y(n),
satisfying the relations

aayln) = ng(m),  (Y(m), Y@) = Sna 2

The matrix elements of ¢ and a' in this representa~
tion are given by the equations

(\b(m)r a¢(n)) = n*ém,n—h
(¥(m), a'¥@) = @ + Do ner.

Let us introduce the eigenstates of the destruction
and creation operators:

@

fla" = 2* (.

These eigenstates can be expressed as linear com-
binations of eigenvectors, ¥(n) or ¢t(n), of the

als) =zl
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number operator defined in (2). In fact,***"*

e’y = |&) = exp (=} [eP) 3 o ¥ ),
T €ex Z n=o(—n—!)—§ (4)

i o (2*)"
o) = | = e (=1 bF) T 05 v,
These states given by (4) form a normalized over-
complete set but they are not orthogonal,**'** since

|2) = exp {—3(l[ + [ — 2%} (5)
Sudarshan*'® has shown that the overcompleteness

of the states can be used to represent every density
matrix,

o= 33 o, m)ym) ' (m) ®)

n=0 m=0

in the “diagonal” form
o= [ d26@ 19 Cl. Q)

where the “phase-space distribution function” ¢(z)
is given by

o & 3
#() = Z:D P % exp [’ + i(m — n)6]

{(—a—‘z)m 6(r)}. (®)

This function ¢(2) is not necessarily nonnegative.
Equation (8) is the sufficient condition for the
density matrix p to be expressed in the ‘“‘diagonal”
form (7), but is not a necessary condition. If we
regard Eq. (7) as the definition of the phase-space
distribution function ¢(z), then we may obtain a
¢(2) which is not given by Eq. (8). For example,
in the case of blackbody radiation two different
representations of the phase-space distribution fune-
tion, ¢(z) are known; one is expressed in terms of
a symbolic function like Eq. (8) and the other is
a Gaussian distribution.®* '3

It has recently been shown'® that a distribution
function ¢(2) may be defined, which unlike the
Sudarshan distribution function ¢(z) defined by (8),
is nonnegative and behaves as a true probability
distribution function. It may be defined as 1/x
times the expectation value of the density matrix
'(6) with respect to the state [z),

0@ =<l o l2)

= 1 Z ol m) exp (— D)l ©)

9 J. R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960).

10 8, Schweber, J. Math. Phys. (N. Y.) 3, 881 (1962).
1 1,, Mandel, Phys. Letters 7, 117 (1964).

12 C. L. Mehta and E. Wolf, Phys. Rev. 134, A1153 (1964).
1Y, Kano, Proc. Phys. Soc. (Japan) 19, 1555 (1964).
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This function, ¢(z), is particularly interesting, since
it plays formally the same role as a classical prob-
ability distribution function, when the statistical
expectation value of an operator given by an anii-
normal order product of destruction and creation
operators, a®(a')’ is evaluated:

tr (pa*a” = Tr (a"pa)
=L [l o ey
f d’2qR)2°(*)’. (10)

Unlike the distribution function ¢(z) given in (8),
this function ¢(z) is an ordinary function, i.e., q(2)
is not expressed in terms of the delta function or
its derivatives. Moreover, the function ¢(z) is non-
negative and is normalized to unity in the z-space,

f q@@) d% = 1. ¢8))

We can also show that g(z) is finite for all finite |2).
The proof follows from (9):

0@ =260k
[z{n‘ zlm

<23 Jo, m)] exp (= 2B

n,m

< }, exp (— |¢[*) Zm (%@>
< ,% exp (=) 22 (J%_)% > (lf;';m)*

The series on the right-hand side is convergent for
all finite |2|.

If we know ¢(z), then we can uniquely determine
the density matrix. Multiplying both sides of Eq. (9)
by 2* (where A is a nonnegative integer), and
integrating over 6, we obtain the equation

[ 02 a0 =2 3 otm + 5, m) exp (~IeD)

le(m+)\)
X m+nmp 42
On multiplying both sides of Eq. (12) by exp (4 [2|*)
and setting |2|* = z, it then follows that
m+N

F(r) = 2 fm_‘,p(m-l-k, m)m,(l3)

where the function, F(z), is defined by

Flz) =¢ fh q@)2" do.
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If we differentiate Eq. (13) m + A times with respect
to z and set + = 0 afterwards, then we obtain the
equation

(L5 7w ] = 2etm 2, m (@D,

ie.,

m 3, m) = L )[dmp ]

p(m m 2 \m + N1 Lz (x) o (14)
Therefore, we see that the matrix elements, p(m, n),
can be determined from the knowledge of ¢(z). We
can also determine the phase-space distribution func-
tion ¢(z), given by (8), by substituting into (8)
the value of p(m, n) given by (14). This implies
that the function ¢(2) [defined by (8)] is uniquely
specified by q(z). However, if we take Eq. (7) as
the definition of the function ¢(z), then ¢(z) is not
always uniquely determined.

Furthermore, the matrix elements, p(m, n), cal-
culated from ¢(z) can be used to determine the
function, R(z, z’), introduced by Glauber,® in his
recent investigation on quantum theory of coherence.
This function is defined by the formula

R, ?) = };<z! o )

= Llexp
T

3 (6l + P T oo, m)-E0 5 (15)

We see that ¢(z) is a boundary value of R(z, 2'):
¢(2) = R(z, 2). This function, R(z, 2’) is also useful
for calculating the statistical expectation value of
a normal ordered operator O:

tr (o) = [@z [ @ ke @0l 1

Let us next consider the relation between the
function ¢(2) given by (9) and the function ¢(2)
defined by Eq. (7). From (9) and (7) it follows that

0@ =1 [ & o0

X exp {—l2|* — |¢]* + 26*r + ).

Settingz =z +iyand ¢ = a« + 48 (z, y, « and 8
all real) in the above equation we obtain the formula

1915

0@ =17 [T dadssia+ i

—(z — a)® —

(v — B)*}.

If we change the variables of integration from «, 8
to u, v, through the equation, x — « = u and
y — B = v, we finally obtain the following relation
between ¢(z) and ¢(z):

9@ = %f_w f_mdudv
X o(@ — u) + iy — o)) 7.

The above consideration can be generalized to an
arbitrary (countable) number of states. The states
are now represented by a sequence of complex
numbers {z}, and the Fock representation basis is
labeled by a sequence of nonnegative integers {n}.
The matrix elements of the density matrix can be
represented by functions of two such sequences
o({n}, {m}). The statistical expectation value of
any antinormal ordered operator 0({a}, {a*}) may
then be caleulated by means of the formula

X exp {

1n

e [oe(lal, [a'D] = [ @800}, (DaCieh, (18)

where 0({z}, {z*}) is a function which can be ob-
tained by substituting the eigenvalues {z} and {z*}
for {a} and {a'}, respectively, in the operator
0({a}, {a'}). The distribution function ¢({z}) in (18)
is given by

ofzh) = 2. olln)

in), {m]

m) T1
(@ )"‘

X exp (= [l =5y
where « denotes a typical momentum-spin state

(X, ).
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A Hamiltonian of a one-dimensional Heisenberg model with ferromagnetic interaction is expressed
in terms of fermion operators, and renormalized linked cluster expansion has been carried out. It is
shown that the approximation leads to ferromagnetic behaviors similar to the molecular field approxi-
mation. A model for which the second- and higher-order terms vanish is presented and regarded as an
example of quantum-mechanical systems that shows ferromagnetism rigorously. It is also noted that
the model is very much like the Husimi-Temperley model or the van der Waals gas with respect to
a long-range character of interaction and the vanishing of higher-order terms.

I. INTRODUCTION

HE existence of a Curie temperature below

which a spontaneous magnetization appears and
antisymmetric property of the magnetization with
respect to external magnetic fields are characteristic
features of ferromagnetism. (An ideal case where
hysteresis does not appear is considered.) It is
usually supposed that these features will be derived
for some type of crystal lattices by evaluating the
partition function of the Heisenberg model with
ferromagnetic interaction, whose Hamiltonian is
given by

H=—22 [Jn(SP87

{i7)
+ S,('”)S,(-v)) + JF“S:-‘)S;')]
— dgus%e 3 8. )

Here S;, Jr1, Iy, 9, #n, and 3C denote, spin op-
erator at the ¢th site, perpendicular and parallel
components of exchange integral (Jgy, Jry > 0),
Landé ¢ factor, Bohr magneton, and external
magnetic field, respectively. ) ;;, means summation
with respect to nearest neighbors.

Existing theories on the Heisenberg models are
classified in three groups, i.e., (1) high-temperature
expansion (Opechowski'; Kubo, Obata, and Ohno’;
Rushbrooke and Wood®; Brown and Luttinger*);
(2) low-temperature expansion [(2a) F. Bloch,’
Dyson,®Oguchi,” Morita,*Wortis,® M. Bloch,'® Oguchi

1'W. Opechowski, Physica 4, 181 (1937); 6, 1121 (1939).

. *R. Kubo, Y. Obata, and A. Ohno, Busseiron Kenkyu
%111‘3 g%)anese) No. 43, 22 (1951); No. 47, 35 (1952); No. 57, 45

3G. S. Rushbrooke and P. J. Wood, Proc. Phys. Soc.
(London) A68, 1161 (1955).
(1945 ?) A. Brown and J. M. Luttinger, Phys. Rev. 100, 685

s F. Bloch, Z. Physik 61, 206 (1930).

¢ F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).

7 T. Oguchi, Phys. Rev. 117, 117 (1960).

8 T. Morita, Progr. Theoret. Phys. (Kyoto) 20, 728 51958).

¢ M. Wortis, Ph.D. thesis, Harvard University (1963);
Phys. Rev. 138, A1126 (1965).

10 M. Bloch, Phys. Rev. Letters 9, 286 (1962).

and Honma;" 2(b) Frank,’* Mannari'®’]; and (3)
approximations “at large” [(3a) P. Weiss,'* Oguchi;'’
3(b) P. R. Weiss,'® Kasteleijn and Kranendonk,'’
Bogoliubov and Tjablikov,'® Englert,’* Kawasaki
and Mori,”® Tahir-Kheli and ter Haar,* Stinch-
combe et al.,” Callen,” Fujishiro, Takano, and
Oguchi®].

In the theories in the first group, a real root
of a truncated polynomial expressing inverse sus-
ceptibility is regarded as an approximate value of
the Curie point under the assumption that it exists.
The root, however, does or does not exist according
to the degree of the truncation, and the method of
the truncated inverse susceptibility fails to be ap-
plicable in a case where the inverse susceptibility has
nonreal singularities inside a circle which intersects
the real axis at the true Curie point in the complex
plane of inverse temperature. This method, together
with the Padé approximant method®® which is
powerful for the analytic continuation outside the
radius of convergence, does not give a proof of the
existence of the Curie point. The symmetry re-
quirement is satisfied in the theories in the first

11T, Oguchi and A. Honma, J. Appl. Phys. 34, 1153 (1963).

12 D, Frank, Z. Physik 146, 615 (1956).

( ‘381). Mannari, Progr. Theoret. Phys. (Kyoto) 19, 201
1958).

14 P, Weiss, J. Phys. (4) 6, 661 (1907).

15 T, Oguchi, Progr. Theoret. Phys. (Kyoto) 13, 148 (1955).

16 P. R. Weiss, Phys. Rev. 74, 1493 (1948).

17 P. W. Kasteleijn and J. van Kranendonk, Physica 22,
367 (1956).

18 N. N. Bogoliubov and 8. V. Tjablikov, Dokl. Akad.
Nauk SSSR 126, 53 (1959) [English transl.: Soviet Phys.—
Doklady 4, 589 (1959).

1 F. Englert, Phys. Rev. Letters 5, 192 (1960).

20 K, Kawasaki and H. Mori, Progr. Theoret. Phys.
(Kyoto) 38, 690 (1962).

2 R, A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127,
88 (1962).

22 R, B, Stinchcombe, G. Horwitz, F. Englert, and R.
Brout, Phys. Rev. 130, 155 (1963).

2 H. B. Callen, Phys. Rev. 130, 890 (1963).

# T, Fujishiro, F. Takano, and T. Oguchi, J. Phys. Soc.
Japan 19, 1666 (1964).

2 (3, Baker, Jr., G. S. Rushbrooke, and H. E. Gilbert,
Phys. Rev. 135, A1272 (1964).
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group, since they use low field as well as high-tem-
perature expansion. The expansion coefficients can
be obtained exactly as far as we wani. All theories
in the first group are essentially equivalent in the
sense that results of one theory can furnish results
of any other theory simply by manipulating the
series, even if parameters of expansions are different
from each other.

The theories in the second group are low-tem-
perature and high-field expansions. The magnetiza-
tion in vanishing magnetic field is calculated by
putting exp (—1gus3/kT) = 1 in these results.
The theories in this group are further divided into
two subgroups; (2a) the one using Bose statistics,
and (2b) the other Fermi Statistics. (Excitations
in Heisenberg spin systems are treated neither as
bosons nor fermions in a strict meaning.) The
former 2a gives a finite spontanecus magnetization
at low temperatures for three dimensional lattices
(sc, bee, fee). For one- and two-dimensional lattices,
however, magnetization and susceptibility diverge
(magnetization tends to minus infinity). On the
other hand, the latter 2b gives a finite spontaneous
magnetization at low temperatures for all one-
two-, and three-dimensional lattices. Magnetization
is obtained in the form that is not antisymmetric
with respect to external magnetic fields, and there
are no proofs of the existence of the Curie point in
the theories in the second group, both in the use
of Bose and Fermi statistics.

The theories in the third group describe well the
qualitative features of ferromagnetism above men-
tioned, a subgroup 3a for all one-, two-, and three-
dimensional lattices and the other subgroup 3b for
only three-dimensional lattices. It is to be noted
that exact information about the model (1) is not
obtained from the theories in the third group,
though they give a fairly good qualitative deserip-
tion for both low- and high-temperature regions.
It is quite doubtful whether such qualitative features
are realized in one- and two-dimensional lattices
as derived from the theories in subgroup 3a. Now
this point is discussed.

The theorem that the one-dimensional classical
system has no phase transitions was proved by
Takahashi®® for an arbitrary nearest-neighbor inter-
action and by Van Hove® for an arbitrary finite-
ranged interaction. These proofs, however, do not
hold for a quantum mechanical system.

The one-dimensional Heisenberg model with the

(192? Takahashi, Proc. Phys. Math. Soc. Japan 24, 60
27 L. van Hove, Physiea 16, 137 (1950).
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ferromagnetic interaction is usually supposed not to
have a spontaneous magnetization since an integral
representing it diverges.”* A true proof should
be, however, such that the integral representing
magnetization vanishes. The divergence is caused
by an inadequate use of Bose statistics in treating
the spin systems. Such divergence appears also
in Dyson’s theory® if it is applied to a one-dimen-
sional problem. This fact makes it doubtful whether
the kinematical interaction is really small or not
even in three-dimensional lattices near and above
the Curie point. Indeed Tahir-Kheli and Callen®
and Haas and Jarrett’® showed that Oguchi and
Honma's theory'' leads to infinitely high Curie
temperature. A peculiar behavior of the magnetiza-~
tion near the Curie point in Bloch’s theory™® also
seems to be caused by neglecting the kinematical
interaction. On the other hand, similar divergences
of integrals in Green function theories'®™*"'* do
not lead to the divergence of the spontaneous
magnetization but to the vanishing of it for one-
and two-dimensional systems.

. RENORMALIZED LINKED CLUSTER EXPANSION

Now let us analyze an approximate theory which
gives a spontaneous magnetization and a Curie
temperature and which satisfies the antisymmetry
requirement of the magnetization, and seek a model
for which these approximate partition function holds
as an exact one.

In the former paper by the authors,* renormalized
linked cluster expansion up to second order was
applied to the one-dimensional Heisenberg model
with antiferromagnetic interaction and gave satis-
factory results. Its first order agrees with the results
in the variational treatment by Bulaevskii.” When
the method described in the former paper is applied
to the case of the one-dimensional ferromagnetic in-
teraction, it gives a spontaneous magnetization for
the one-dimensional lattice and is regarded as a the-~
ory which belongs to the subgroup 3a. This will be
discussed in detail in this section. Notations and cal-
culations are the same as in Ref. 31.

Hamiltonian (1) can be expressed in terms of

% R, E. Peierls, Quantum Theory of Sohds (Oxford Uni-
versity Press, New York, 1955), Chap VI
»® R, A. Tahir-Kheli and H. Callen, J. Appl. Phys.
35, 948 (1964).
C. W. Haas and H. 8. Jarrett, Phys. Rev. 135, A1089
(1964)

a8, Inawashiro and 8. Katsura, Phys. Rev. 140, A892
1965
( ”I); N. Bulasevskii, Zh. Eksperim. i Teor. Fiz. 43, 968
(1962) [English Transl.: Soviet Phys.—JETP. 16, 685 (1963)}
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Fermion operators a7} and g, for Ith site of the lattice
in the case of one dimension.¥-%

N
H = _JFJ_ lE (atal+x -+ at+1al)
-1
¥
—J 5 zz; & ~ 2a%a; + 2a'§alat+1“l+1)
=1

N
—mie Y, (1 — 2a%ay),

i=3

@

where m = 3gus. Hereafter the case Jpy = Jgy = Jy¢
is treated. Transforming it into k-space, we have

H=H,+H, + Hs, @
H, = —3JeN + 2 [elk)aio, — m¥],
H, = ), g(k)ata., @
Hy = ~22 5 5 5 5 Vil b, ks, ko)
X anstst,  (5)
where
V(klx kz; kax k‘i) = 5K(k1 + ke — ks — k*)
X [cos (ky — ky) — cos (b — ka)],  (6)
k) + (k) = 2Jp(1 — cosk + he), (7

where hy = (m3/Jy). Linked cluster expansion
will be carried out by regarding H, as an unper-
turbed part and H, -+ Hy as a perturbation. The
functions e,(k) and ¢(k) are determined in such
a way that the contribution of graphs of the second
and higher order which have self-closed lines van-
ishes. Then

(k) = —2J5(—he — 25 + p cos k), ®)
alk) = —2Je(—1 4 25 — (p — 1) cos k). 9)

Here s and p are solutions of a set of simultaneous
transcendental equations

8 = §Bo(Ky, ax, p), (102)
p — 1 = Bu(Ky, ar, p), (10b)
where
ar = hy + 25, Kr = Jo/2%T, hp = m3c/Js,
BonlKr, az, p)
- }r fo " cos™k tanb"[2K s(p cos k — ax)] db. (1)

3 Y, Nambu, Progr. Theoret. Phys. (Kyoto) 5, 1 (1950).
a 9:;3 ? Katsura, Phys. Rev. 127, 1508 (1962); 129, 2835
(1924 §Z Katsura and S. Inawashiro, J. Math. Phys. 5, 1001

S. KATSURA AND 8.

INAWASHIRO

These and further results are obtained by equating
J = —"J ¥y K fdd ""‘KF,

in equations in the former paper.’* Especially the
partition function up to first order

1 17"
N logZ = - j; log {2 cosh [2Ky(p cos k

gives the magnetization, the energy and the sus-
ceptibility as

M/Nm = 2, (13)
E/NJy = 3" — 1) — 28 — 2shy, (14)

xJe/Nm? =1 — 1/{1 — 2Ky[l — Bo:(Kw, ax, D)1}
(15)

(12)

I

It

Now the case T — 0 (Ky — ) is considered. In
this limit tanh ¢ — sgn z, and

p—1=0, 1 < ay,

(16)
p—1= -/~ a:/p’), ar <L
s =%, 1 < ay,
8 = (1/r) are sin (az/p), ar < 1. a7

Eliminating ar from (16) and (17), we have
s=14 he > 0,
= —'%, hF < 0.

When the temperature increases, the functional
forms of p and s are modified from (16) and (17)
so as to have no singularities at ay = 1 (Fig. 1).
The nonvanishing value of 2s at hy = 0 (@ = 2s),
however, continues to exist until the gradient
(028/3ax)ar-o Teaches 1. Accordingly the value of

2s
2g =g,

10 Ky w00

10
Kmoo S
10

9,

K=10
Kom.5 -

Ko}

Fie. 1. Solutions of the simultaneous equations (10a)and (10b).
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p(Kr, hy = 0) in (13)—(17) is to be substituted by
p(Kr, a5 = 2s) for T < T, and by p(Ks, ar = 0)
for T > T, (Fig. 2). When the s — hy curve of the
p 1O T T T T T T T T T

K13 P b

S =

4l R

2 .

° T S S S

KT/,

Fi1a. 2. The value of p in the case of no magnetic field as a
function of temperature,

present result is transcribed as a density-fugacity
curve of a lattice gas problem, it turns out that the
curve is an example in which the condensation
point is not given by the smallest real positive
singularity of the analytic function defined by the
Mayer’s fugacity series.>**

The value K,, corresponding to the Curie tem-
perature, is obtained from the condition

(a2s/aaF)aF-0 = 1}
ie., it is given by K5 that satisfies
1 f dk 1
T Jo cosh2 [2KFp(KF, hF = 0) cos k] 2Kp

The value of kT./Jy has been obtained to be
0.715 = 0.005.
The spontaneous magnetization is shown in Fig. 3.

(18)

Mo T T T T

0 * o5 ’ o G2
Fie. 3. Spontaneous magnetization M.,.. — indicates the
value using the leading term in (19).

38 8, Katsura and H. Fujita, J. Chem. Phys. 19, 795 (1951);
Progr. Theoret. Phys. 6, 498 (1951).
7 8. Katsura, Advan. Phys. 12, 391 (1963).

1919
Near T ~ 0,
M 1 of 1 -1
N =1t oy @ - 13 e + OK3F") )

06047 1 .
1 et KJ + O(K%').

I

The magnetization M (H) and the entropy S(H) as
functions of magnetic field at several temperatures
are shown in Figs. 4 and 5. The former is antisym-
metric and the latter symmetric with respect to
external magnetic fields. Unstable parts of the van
der Waals type are also shown in Figs. 4 and 5.
The energy and the specific heat are shown in
Figs. 6 and 7. The specific heat is finite and has a
finite jump at T = T,. The inverse susceptibility
is shown in Fig. 8.

Singular natures of magnetization, specific heat,
and susceptibility near the Curie point are given by

M/Nm ~ ¢l — T/TG), (20)

s s i
-05 o 05 1.0 L5 20
mX
&

F1a. 4. Magnetization as a function of magnetic field at
several temperatures. M(H) is continued antisymmetricall;
to negative magnetic field part. Unstable van der Waal
part is also shown in the figure. ~— indicates limit of the
van der Waals part at 7 = 0.

S
Nk

0.7 log2

F1a. 5. Entropy as a function of magnetic field at several
temperatures. S(H) is continued symmetrically to negative
magnetic field part.
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KT/Je
5

09 2

o7 7

061 1

- 03 N

0.2 T

F1a. 7. Specific heat in the case of no magnetic field.

C/Nk~acll = To/T]" (T2 Ta), (g
~ell = T/T)* (T 5 To),
Jex/Nm* ~e[l — Te/T1™" (T 2 To), ©2)
~ell = T/T]™ (T $ To),
where
a=a =0, B=3% wv=9=1

These values of indices are the same as those of
molecular field theory and satisfy the thermodynamic
inequality®®'*®

# J W. Essam and M. E. Fisher, J. Chem. Phys. 38,

802 (1963).
# (3. S. Rushbrooke, J. Chem. Phys. 39, 842 (1963).
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3 1 1 1

-0

Fre. 8. Inverse susceptibility. Ordinate and abscissa denote
Nmt/Jgx and kT /Jy = 1/2Kp, respectively. Heavy line
denotes the value from (15), where ag = 0 for T > T, and
ap = 2s given by (10) for 7' < T, respectively. Numbers
1-10 denote values from the partial sum of the truncated
polynomials of the nth order given in Appendix.

o +28++" 2 2.

This transition is not of “the second kind” of
Tisza but of the second order of Ehrenfest (the
second kind of Landau).****! In the molecular field
theory the magnetization at low temperature is

M/Nm =1—2exp(~ 4Ks) + -+

in contrast to (19). It is further to be noted that
the present treatment does not lead to a peculiar

behavior of the magnetization near the Curie point
like Bloch’s™ theory.

IOI. AN EXACTLY SOLUBLE MODEL AND
DISCUSSIONS

What kind of a model will give the above men-
tioned partition funection as an exact partition func-
tion? Now we consider a replacement of

40 L. Tisza, Proceedings of the Conference on Phase Trans-

Jormations on_Solids, edited by Smolchowski, Mayer, and
Weyl (John Wiley & Sons, Inc., New York, 1951), p. 1.
. % The derivative of the specific heat at T = 7, is finite,
in contrast to the singular nature expected by Landau. [L.
Landau and E. Lipshitz, Statistical Physics (Clarendon Press,
Oxford, England, 1938), Chap. XI.]



AN EXACTLY SOLUBLE MODEL

Vi, k2, Koay a)

= Ox(ks — ks)dx(k, — ku)[1 — cos (k;, — k)] (23)
instead of (6) in the perturbation Hy. For the first
order perturbation, the replacement gives no effects.
For the second- and higher-order perturbation con-
tributions from graphs with self-closed lines vanish
by the choice of s and p satisfying (10a) and (10b).
In the other contribution from graphs without self-
closed lines of the second and higher order the
multiplicity of summation is lowered at least 1 and
the order of magnitude reduces by a factor 1/N
or more. In the limit N — o the result of the first-
order perturbation becomes an exact solution of
the Hamiltonian that is given by (3)-(5) and (23)
with (8) and (9).

Transforming (3) with (23) into the configuration
space, we have

NJ +
H = = + Jr Z [(a @+ + a1+1az 2a lat)
—mic(l — 2a%a,)]
_ _t&‘_ i at ZN: +
N LA o z'-latlall
N N
+ IZ a4, ZZ awai'm] . (24)
=1 "1

The last term of (24) expresses a kind of infinitely
long-ranged attractive interaction, which gives an
interaction energy proportional to N, since sums
over | and I’ are taken independently.

These situations are just like the Husimi, Tem-
perley model***® or the van der Waals gas (the
Kac-Uhlenheck-Hemmer model)**** where only the
second virial coefficient is modified from an ideal
lattice gas or an ideal gas, by an infinitely weak
and infinitely long-ranged attractive interaction,
whose sum is finite. Though the treatment in this
note has been carried out for the one-dimensional
model, the qualitative conclusion holds for two
and three dimensions, as it does in the Husimi-
Temperley model or the van der Waals gas. [The
generalization of the Hamiltonian (3)-(5) and (23)
into three dimensions yields an exact solution of

28, Katsura, Progr. Theoret. Phys. (Kyoto) 13, 571
(1955), see also Ref. 37, p. 406.
V. Temperley, Proc. Phys. Soc. (London) A67,
233 (1954)

“'M. Kae, G. E. Uhlenbeck, and P. C. Hemmer, J. Math.
Phys. 4, 216 (1963).
% See Ref. 37, p. 410.
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similar nature.] This fact suggests that a long
ranged attractive interaction is favored by a phase
transition in a one dimensional problem also in a
quantum mechanical system. (Of course it is not
a necessary condition for the three-dimensional prob-
lem.)

Whether the one-dimensional Heisenberg model
has a spontaneous magnetization or not, is not
yet quite rigorously solved. Though the nonexistence
of spontaneous magnetization is derived from the
theories in the subgroup 3b, these approximate
theories do not give an exact proof. That the one-
dimensional Heisenberg model has no spontaneous
magnetization, may rather be inferred from results
of exact calculations for finite systems by Griffiths*®
and by Bonner and Fisher*” or from an extensive
numerical analysis using the Padé approximant
method by Baker, Rushbrooke, and Gilbert.*® The
reason of the nonexistence might be attributed to
essential differences between one- and three-dimen-
sional lattices. As one of the differences it is to be
mentioned that bound states exist for all values of
k with lower energies than the corresponding spin
waves in the one-dimensional model while they do
not in the three dimensional model.®®** We hope
that a theory which takes such difference into con-
sideration explicitly will appear.
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APPENDIX

A high temperature expansion of the suscepti-
bility of the one-dimensional Heisenberg model was
given by Baker, Rushbrooke, and Gilbert** up to
the 10th power of Ky. The inversion of their series
gives a high-temperature expansion of the inverse
susceptibility:

48 R. Griffiths, unpublished.

(1946;4 .{ C. Bonner and M. E. Fisher, Phys. Rev. 135, A640
M. Wortis, Phys. Rev. 132, 85 (1963).
# 8. Katsura, Ann. Phys. (N. Y.) 31, 325 (1965).
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2
Zc? =1 — (2Ky) + (2Ks)' — 3RK»)® + }(2Ks)*

29 17
+ == (2K1v)'j - im (2KF)6

120

—_ L]:_ 7 m 8
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1691 o _ 185027 ”
25920 (2K+) 2419200 (2Kr)

+ O(Kx"). (A.1)

Curves of truncated polynomials for Nm?/Jxx up
to degree n are also shown in Fig,. 8.
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The Taylor series expansion of a function f(A + B) of noncommuting operators A and B is written
in several ways. Recursion relations, generating functions, and some explicit formulas for operator

coefficients of this expansion are given.

1. INTRODUCTION

3

N certain problems of physics'™® it is required

to evaluate the function f(4 + B) when the form

of f is given, the spectrum and eigenfunctions of 4
are known, and

[4,B] = AB — BA = 0. 1)

The formulas given in the works of Golden® and
Kirzhnits* have not been expressed in sufficient
generality and are sometimes difficult to interpret
and apply. The question has received some attention
from a purely mathematical point of view also.
Finkelstein® wrote down a symbolic Taylor series
for such a function in terms of a ‘“polarization
operator”’® and gave a formula for the first dif-
ferential of a function of an operator with respect to
the operator. This formula was given a more concrete
interpretation by Schwartz’ who also gave the Taylor
series for the case when 4 and B commute, viz.,

f4 +B)= X2/, it [4,B]=0. @

=0

The present problem is, of course, a problem in
perturbation theory. The special case in which
f(4) = exp A has been widely studied and is closely
related to the general case. In fact the solution of
‘the exponential problem furnishes the generating
functions for the coefficient operators C"(4, B) in the
formula

4 +B) = 0w W, ©

n=0
If X is a small parameter one can further expand

1K, J. Le Couteur, Proc. Phys. Soc. (London) 84, 837
1964).
( 2 S? Golden, Rev. Mod. Phys. 32, 322 (1960); Phys. Rev.
105, 604 (1957) and 107, 1283 (1957).
3 1. C. R. Alfred, Phys. Rev. 121, 1275 (1961).
+ D. 1. Kirzhnits, Zh. Eksperim. i teor. Fiz. 32, 115 (1957)
{English transl.: Soviet Phys.—JETP 5, 64 (1957)}.
& D. Finkelstein, Commun. Pure Appl. Math. 8, 245 (1955).
¢ E.g.,, W. Magnus, Commun. Pure Appl. Math. 7, 649
1954).
( 7J? Schwartz, Commun. Pure and Appl. Math, 8, 371
(1955). N. Dunford and J. T, Schwartz, Linear Operators
Part I (Interscience Publishers, Inc., New York, 1955), p. 584.

C"(4,\B) = 3 NCi4, B). @

In this note we shall derive the formula (3) and
give recursion relations, integral representations, and
explicit formulas for the operators C* and C?. It
then becomes possible to define derivatives of an
arbitrary order with respect to operators and to
write down explicit formulas for them. This com-
pletes the construction of the operator Taylor series.

2. DERIVATION OF EQ. (3) AND
RECURSION RELATIONS

No attempt will be made at mathematical pre-
cision in definitions. It is believed that the manip-
ulations carried out below are valid for operators
usually encountered in theoretical physics. The for-
mulas hold at least in the case of finite matrices and
I think that they would also be valid under the more
general conditions contemplated in Ref. 7.

A function f(4) of an operator A is defined by
means of the formula

f4) = @) [ &10RE, ), G

where the contour ¢ goes around the singularities of
the resolvent R(z, A) = (z — A)™" in the right sense.
In the further work we shall make the abbreviations

@)~ f (2,@—1[“ Ef,’

R, A+B)=RE@ =@—A-B)", (6
and
Rz, A) = Ry(2) = (z — A)™". )

We shall assume further that the Taylor expansion
of f(2) exists.
From (6) and (7) we have the identities

R(z) = Ro(2) + Ro(2)BR() (8a)
= Ry(z) + R(2)BR.(2) (8b)
= Z; Ro(2)(BR,(2))" (8c)
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and

1= [&re) = [ &R, ©)

R = [ & G — 2)RED. 19

The last equation is, of course, true for any appro-
priate function of 2.
Using (5) and (8a) we have

4+8) = [ & 1B + REBRE)

= &) + [ dz dey daa 1)

X (¢ — 2,) "z — 2.) 'R(z)BR,(2,)-
On using the identity
C—2)7—2)"
=(e—2)" —(—2)")a—2)"
and integrating over z,
14+ B) = 1) + [ a2, L=
X R(z)BR,(2,)- (11)
Finally, on Taylor-expanding f(z;) about z, we get
HA +B) = 1) + [ doy a3 Em B

n=1

X ™ (2,)R(2:)BRo(22). (12)

Because of the position of R(z,) and Ro(z,) with
respect to B, on integration with respect to z, we
get a factor (A + B) to the left of B for each power
of z,; and on integrating with respect to 2, we get a
factor A to the right of B for each power of z,, in
addition the ™ (2,) gives a factor f™ (4) to the right
of B. That is, in the formula (3),

M+B=3Lomw, @

the coefficients C™ obey the recursion relation
C*"=A+BC' —C'A
C" = [4,C""] + BC™.

Using (4) in (13) we get the corresponding rela-
tions for C7,

or 13

C: = [4,C77'] + BCL. (14)
We have the special values
— 1 _ 2 3
C° =1, C' =B, C [4, B] + B?, (15)

C* =1[4,[A,B]] + [4, B’] + B[4, B] + B,
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and
=1,
Ci=0; Ci=B, (16)
C;=0; Ci=1I[4,B]; C;=B.
In general,
Cs = 83 Cy =B, an

which is consistent with the requirement that when
[A, B] = 0, Eq. (3) must reduce to the Schwartz
formula (2).

3. EXPLICIT GENERAL FORMULA FOR C,»

It is convenient to introduce a more concise nota-
tion for representing repeated commutators with
respect to 4:

{B}’ = B,
{B}' = [4, B], (18)
{B}* = [4, [4, B]],
so that
{B}* = [4, (B}, (19)
{{B}"}" = {B}™", (20)
{B + D}* = {B}" + {D}", @n
B0y = 3 (Erorz. @
It follows that
Cr = {C"} + BCYZ @3)
and
Ct = b0, Ci= {B}I". (24)
From Eq. (23),
¢ = T Eem). 25)

s=0

Using Eq. (25) repeatedly, one can reduce the
superseript until it becomes equal to the subscript.
Then using the relation Cj, = B™, one gets

o1 pmi—g; pelwgy—zy "‘1"22—'-“"
=3 2
8:=0 83=0 a3=0 Sn—rm0
X B“{B*™{B*" ... B"‘E:_' &4 ..
{ { { } }n-r bracketa } .
(26)
Alternatively,
¢ =3 (Bey, @)

s=0



EXPANSION OF A FUNCTION OF NONCOMMUTING OPERATORS

which has to be repeated r — 1 times when the last
term contains C7~"~2*¢ for which Eq. (24) is used,

=
n—r n—r—s; n—r—s;—ss n—r L 8

Cr=2 > X 2

81=0 s8a=0 83=0 87 —1=0

X BIB(B -~ {BY" " E oy gy

(28)

Formula (27) is convenient when (n — r) is small
and (28) is convenient when r is small. Examples are

et = B, (298)
¢y = 3 BBy, (29b)
= 53 BUBhETY, @9
and

¢ = (B (308)
ci= 3 (BB, (30b)
=3 BBEBF. (300)

2:=0 83=0

All these formulas could be further transformed by
using Egs. (21) and (22).
4. GENERATING FUNCTION
Consider the function
G\, t) = B4, (31)
Its nth derivative, d"G(), 1)/dt" = G"(), 1), satisfies
the relation
qQq,t) = (A + B)G'(1, ) — 7', 4.

This is identical with the recursion relation (13)
among the C". Furthermore, G°(1, 0) = 1 and
G'(1,0) = B, so that

(32)

¢, 0) = ¢ 33)
and
GO\, §) = f: £ o4, 28). (34)

The series expansion of G(A, t) in powers of \ is the
well-known perturbation formula

GO, 1) = X NG,

r=0

-‘where
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G,(t)=‘/:dt1/:ldt2---

x [ dt BG)B(-) - BG)  (35)
[1]
and
B(t) = ¢*'Be™*".
It follows from (4), (34), and (35) that

6.0 = T 504, B).

The exponential function is the generator of the
coefficients in the Taylor expansion when 4 and B
are scalar quantities and it is perhaps interesting to
see that a generalization exists.

5. INTEGRAL REPRESENTATION

The coeflicient of A" in the expansion of (4 + AB)
according to (8¢) is given by

(36)

f 82 J)Ro@)(BRoG)Y
= f’dzdzodzl - de, f(2)

Ro(z.)BRy(2,-1) -+ BRO(Zl)BRo(Zo)_
—2)—2-_1) - (2—2)
In order that f*(4) should appear on the extreme

right, expand f(2) in the integral about 2,. Then the

coefficient of f*(z,) in the above, apart from the
operator factors, is (1/21)7T7 with

Tz, 2.+ -+ 20)

X

T e-2)e iz z:f)O)- Te—w O
which satisfies the recursion relation |
THzy 2, -+ 20) = (&, — 20)T7 (2,2, **+ 2)

+ Ik 21 - 20); (38)
so that
C; = f,dzdz., v dz, Tz, 2, -+ 2)
X Ro(2,)BRy(2,-,) + -+ BRy(2,) 39

where the relative order of 2’s in T7 and among the
product of operators is important.
6. THE RIGHT COEFFICIENTS

It is equally possible to write the operator coef-
ficients to the right of ™ (4), that is, in place of
formula (3) we have

f(4 +B) = > L4

n=0

(40)
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The recursion relations are now different:

-

C*=—{C""} +C'B (41)
and
Cr = —{Cr'} + CiiB. (42
The generating function in this case is
G()\, t) — e—Ate(A+XB)¢. (43)
Since
G0\, 1) = e *'G0, et (44)
it follows that
G=3> e @

To further clarify the relationship between the
two formulas, note that, for any operator X,

f , dz, dz, (f(z:) — f(22))Ro(2:) XRo(22)
f dz, dz, Z e — Z') i

n=1

X f(") (21)Ro(2))XR, (zz) B

[f(4), X] =

hence,

Xf(r) = f(r)X — [f(r) X]
-5

Then, with the help of (46) and (45), Eq. (3) can be
converted directly to Eq. (40).

f(r+n){X}n (46)

7. DIFFERENTIATION WITH RESPECT
TO A MATRIX

In the foregoing we did not have to use the con-
cept of differentiation with respect to an operator,
which was one of the main interests of Refs. 5 and 7.
It was shown in those works that it is possible to
interpret a quantity 9f(4)/04 as a transformation
applicable to the matrices A and B. In other words,
differentiation of an operator function with respect
to its operator argument gives rise to an entity
which is properly interpreted as an operator acting
in the linear vector space spanned by the first type
of operators.

However, it is not necessary to invoke the language
of operator algebras and the new formulas can be
manipulated entirely in terms of products of opera-
tors.

It is best to think of finite matrices of rank N and
write the indices explicitly. The matrix function
f:;(A + B) may be considered as a function of N°
quantities (A,; + B.:); and is to be differentiated
with respect to A:. Applying the Taylor theorem

KAILASH KUMAR

for many variables we have

fuld + B) = 1) + 2 Bu, 5
a by axba
1 _ s .
2! ﬂxbgﬂh Balth’b’ aAdxbxaAatb’ + (47)
It follows that
N 3Fus
7' GIZ' Ba;b;Bu.b; Bn,br aAalbt aAa,,,, A aAa'b'
bysecby
= 2 C A @)

ﬂ-f

The quantity multiplying the B’s is therefore a
direct product of (r + 1) matrices of type 4,; and
is independent of the matrix B. To find an explicit
form for this operator differential coefficient we
must represent C7 as a product.

For this purpose we use the four-index quantities
introduced by Zwanzig.® These quantities, repre-
sented by script symbols, act on ordinary two-
index matrices as follows:

(@B):; = kEt Gi;uiBu, 49)

and among themselves according to the formulas
@1 + Go)isinr = (@r)isim + (@2)isins (502)
(@18)iisnr = 25 (G1)iiimn(@e)mnine- (50b)

mn

The left multiplication by a matrix then corre-
sponds to a tetradic

(4B):; = 2. PCs;mBu,
kl

(51a)
PG = Audy,
and so does the right-multiplication
s = dudys. (51b)

The commutator with respect to A is then rep-
resented by

Qijin = As'kali - 5.'),111,'- (528.)
It follows that
2 @)ssmBu = (B (52b)

With these notations and abbreviating the sum-
mation restrictions in (28) we have

= Y @"Ba"Ba" --- @ =

{s)

“B (53a)

¢ R. Zwanzig, Physica 30, 1109 (1964).
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or

(C:)o‘k = Z E (@h)ik;a,b;(a“)b;c,;a,b,

{a}(bite} (s}

X (ah)bnca.b,c, s (@"""Zl 2

X Blhbeﬂnb: s Barbr'
Comparing with (48) we have

9 fu(A) 3
aAa,b‘ aAa:bs : aAGrbr Z

X (')fi'a';aoba(a‘.‘)anboiaxbx(a ’)blcl;albl
”-'-Z:-‘ 2

)var—: iarbr

(53b)

"_
nl wbhia

X (a")b,ca:a.ba et (G' (54)

)br-—xcr-x jarbyy

where 4, §, a, b, ¢ are the matrix indices and the
restrictions on s; were explained in Eq. (28).

In most applications A is taken as diagonal, so
that

@iz = (As — A)0a0dy;

and (54) is correspondingly simplified.

To write the Taylor expansion even more con-
cisely, note that (53b) can be looked upon as an
rth-order scalar product

(55)

Cha=®B 0CHa
= E (B')“l"'arib;N-b'(C:)':i".a"bi"'bp’

where the definitions of B" and C} are easily ex-
tracted from (53b). The quantity C; is independent

(56)
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of both the function f and the matrix B. We can
now define a row matrix 97, which depends entirely
on the matrix 4,

a =r100,0,0, -

r—zeros

,0,Cr G ... Cr e,
(67)

and a column matrix f(4) with components given by

§4) > J(4), 1V (4), 5:17(4), - = () -+

(58)
With the help of these we can write
f(4 +2B) = 3, 5B O (0f(4), (59

which appears very similar to the ordinary Taylor
expansion.

This formula also provides a& new way of looking
at a matrix function. We note that it need be of no
consequence that the matrices f*’(4) are in some
way associated with a function f(2). In fact, if we are
given any set of matrices g™;n = 0,1,2 --- we can
arrange them in a column like (58), putting in some
zeros if necessary; then given any two matrices A
and B the sum on the right-hand side of (59) can
be formed, and this may be taken as the definition
of a function g(4 + B) of the matrices A and B.
The corresponding quantities g™ (4 + B) may be
obtained by starting the column with g rather
than ¢©.
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Systematic methods for generating various expansions of the function exp (a + Ab)¢, of noncom-
muting operators a and b, are presented. The usual perturbsation expansion in powers of A, and several
other formulas found in the earlier literature occur as special cases. Brief remarks about relative

merits and physical applications are made.

1. INTRODUCTION

HE exponential function of a matrix or a dif-
ferential operator A4, defined as
exp A = 2 A"/nl, 1)

n=0

occurs in the formal solution for { = 1, of the

equation
aU/at = AU; U(t) = exp (A8)U(0), ©

where A is independent of ¢.

With a suitable choice of the quantity A4, the
above equation can represent the time-dependent
Schrodinger equation or the classical Liouville equa-
tion. The equation for the development of quantum
mechanical density matrix and that for the time
development of a Heisenberg operator can also be
put in form (2) if 4 is a super operator'. Zwanzig®
has shown that the super operator can also be put
in matrix form. The canonical and grand canonical
partition functions have the exponential forms and
formally satisfy Eq. (2). Apart from these, Eq. (2)
also occurs as an expression for a system of linear
differential equations.® The usual problem of the-
oretical physics is to find a suitable computational
method for expressing U(f) when

A=a+}‘by (3)

where the eigenvectors of ¢ are known, X is small and
a does not commute with b,

la, b] = ab — ba #= 0. 4)

Most of the work in field theory, the many-
body problem and statistical mechanics, especially
since 1949, (see recent textbooks or collections of
reprints), has been based on the perturbation for-
mula

1 E.g. Appendix in H. Primas, Helv. Phys. Acta 34, 331
(1961).

2 R. Zwanzig, Physica 30, 1109 (1964).

3 For example, see L. A. Pipes, Applied Mathematics for
Engineers and Physicists (McGraw-Hill Book Company,
Inc., New York, 1958).

VOLUME 6, NUMBER 12 DECEMBER 1965
eAt — e(a+)\b)t — Z )\nu";
n=0
t ty th—r
w=e [ an [an - [ s
0 0 0
X b(—t)b(—t) -+ b(—t),  (5)

b(t) = &*'be ™.

The chief source of variety in the work based on this
formula is the rearrangement of terms and partial
summations in the power series which make use of
the special properties of interactions. While this
formula has received the most attention, other for-
mulas are nonetheless known and have been used
from time to time*™®,

To mathematicians the problem of compounding
exponentials of noncommuting quantities has been
of interest from its origin in group theory, where
it led to the following two ‘“Baker—Hausdorff”’ the-
orems’:

@) if e'e¢” =
tors of z and y;

(ii) if e"we™™ = v, v is a sum of repeated commuta-
tors of w and z.

Related to these is a formula by Zassenhaus’:

(111) e(z+v) (6)

where ¢, is a sum of commutator products of nth
degree formed from z and y.

Much simplification results if the parameter ¢
is included in these formulas. For example, (ii) is
well known in the form

¢’, z is a sum of repeated commuta-

Z, ¥ ,Ca, C3 Ca

= ¢ge’e’ee’t v,

£2 ~zt

€ we =

SEr o wae e @)

n=0 n! n—brackets
The explicit form for z is obtained from (i) by writing

z=Xt, y=7Yt and z= ) t'Z,
n=0
¢ R. Peierls, Z. Physik 80, 763 (1933).
8 A, W. Sdenz and R. C. O’'Rourke, Rev. Mod. Phys.
27, 381 (1955).
¢ H. S. Green, Proc. Roy. Soc. (London) A197, 73 (1949).
"W. Magnus, Comm, Pure Appl. Math. 7, 649 (1954).
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and then equating the coefficients of powers of ¢
on both sides of the equation. This process is com-
plicated enough to require machine computation in
higher orders.®

We shall call (6) the right-running form and write
it as

eEHDE X Te batn Curt lus 8®)

The quantities C, can be obtained by equating
powers of { in expansion of both sides.

By putting X = a and ¥ = N\b it follows by suit-
able applications of (i) and (iii) that there must be
a formula of the form®

At (a+Ab) ¢
= e @

¢ = MM NG W) 9

The first two terms of formula (8) coincide with
the first two terms of a formula used by Sdenz and
O'Rourke® which goes back to Peierls,” whereas
formula (9) has some affinity with that of Green.®

In this note a large number of such formulas is
generated in a systematic way. In particular, two
sequences of formulas will be exhibited; the first
member of both is formula (5) and the last members
are formulas (8) and (9). Some remarks will be
made on their relative merits although it is recog-
nized that one can not go far in this direction without
a full specification of the physical system. At the
same time the treatment is not oriented to mathe-
matics either, although the mathematical ramifica-
tions of these topies are also very wide. The point
of view is rather that of theoretical physics of many-
body problems where one seeks a scheme for genera-
ting approximations.

2. LEFT-RUNNING FORMULAS

The formulas (5), (6), (8), and (9) will be called
right-running formulas. The property being referred
to becomes clear on comparison with their left-
running forms:

et = 2 au(t)
n=0

tn—1

¢t ts
u(t) = f at, [t - f d.
o vo 0
X b(tn)b(ta-s) -+ b(t)e™, (10)
et = .. "0 ool @t 0% % 1)
eAC = ess e)xl'.(t) e 6)""“)6)‘“(”8“. (12)
Since
eAle—A‘ = 1
2

8 K. Goldberg, Duke J. Math, 23, 13 (1956).
¢ F. Fer, Bull. Classe Sci. Acad. Roy. Belg. 44, 818 (1958).
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it follows from (8) and (11) that
On = (—)”+10n) (13)
and from (9) and (12) that
¢u(8) + ou(—1) = 0. (14)

Formulas (13) and (14) are useful in checking
calculations. It is slightly more convenient to deal
with the left-running forms because usually the
operators act to the right on state functions.

3. EXPLICIT FORMS FOR C, AND g,

It has not been possible to obtain closed expres-
sions for these quantities. The first few terms C,-can
be evaluated as indicated earlier by comparing
of ¢ or by other processes indicated in references
quoted by Magnus,’

C; = 3{a, b), (152)
Cs = $la, [a, b]] + 3[5, [a, B]]. (15b)

The quantities o, are obtained by equating the
powers of A on both sides of (12) using (10),

¢
0'1 = ule_“‘ = f dtl b(tl), (168:)
0
—at _ 01
O3 = Uk - '2—!
1 b
- ifo dt‘fo dts [b(t), b(t)],  (16b)

o1
3!

Ua(t) = ’u3e_°‘ — 030 —

= “an, / " it [ " dty {[b(t), [b(t), b))

— [b(ta), [b(2), (&)1} (16¢c)

In the appendix a relationship between the time
derivatives of ¢’s is derived and it is shown that the
term ¢,(f) is an integral of a sum of n-fold commuta-
tors of operators b(f) taken at n-points & --- ¢,.

It follows from theorems (i) and (iii) that o, are
sums of commutators of @ and b with b occurring
n-times and that

o) ~ ™" as t—0; n>1, (17a)
() =bt as t—0, (17b)
so that
ot =0 =0 (18a)
and

6. =0 if [a,b] =0. (18b)
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That o, should turn out to be integrals of the above
type is not obvious. The physical interpretation of
this form has some appealing features which will
be mentioned later.

Calculation of higher-order terms both C, and
o,, rapidly becomes more complicated—possibly
more so than the computation of Z, in Baker—
Hausdorff formulas.

4. A SEQUENCE OF FORMULAS LEADING TO
"EQUATION (8)

Set
U(t) = e(M-)\lv)t — Ul(t)eat; (19)
then

a
23 Us = NU:B();

U = 142 fo Cdt Uy(t)b(t).  (20b)

0,0 =1, (20a)

If U, is obtained by solving (20b) by iteration and
substituted in (19) then we have the formula (10)
for U(t). As t — 0, the kernel of (20b) tends to \b

and we have
U, () ~ 1+ A,

which suggests the next step, viz.,

t—0,

U.() = U,(0)e™. (21)
Using (20a) this gives
@/, = U.To(t);  Th(0) =1  (229)
or
Ua) = 1 + fo Can UuTat),  (@2h)
Ty(t) = A (b(t) — b)e™*. (22¢)

The next formula of the sequence is, therefore,
Ut) = U™, 23)

with U, obtained by solving (22b) by iteration. This
is the formula discussed by S4enz and O’Rourke.’
Putting A = 1, for brevity we have T,(f) ~ {f[a, b] as
t — 0 so that

Uy~ 1+ 3fla,bl=14+C,; t—0, (24
which suggests the next step, viz.,
Ua(t) = Us(t)e™ . 25)
From (22a)
aU,/at = U,T,(t); U,0) = 1, (26a)
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or
U = 1+ [ d6 TiTy(e)  (26b)
with
Ty(l) = 'O Toe""* — 2C,. (260)
We have now
U(t) = Us(t)e' %e'%e'". 27)

Again from (26b, c)
U) = 1+ (Lo, [a, 80 + 203, (o, B} + -

=14+8£C+ -,
which suggests the next formula,
U®R) = U.(t)e' e’ “1e'lete, (28)

One can continue in this way, transferring the
lowest power of ¢ to the exponent at each subsequent
step. At nth step the formulas are

U(t) = Un(t)el”"Cn—x e et’C:elbelu, (29)
8/ at) U, = UnTa(t); Ua(o) =1 (303)
or

U0 =1+ [ @ U.0m0, (300)
Trn(t) — et“"C’;—xTn_le-t“"Cu—x

— - DrC, n>2, (30¢c)

(@) =0b@1); C, =8, (30d)

¢, = lim (r“ fa dt T,,(t)), (30¢)

Tom £ as 10, @1)

By carrying this process indefinitely, formula (11)
clearly results and that is equivalent to formula (8).

All these formulas can be strictly valid only for
small values of {, since at each stage the operator
coefficient of the power of ¢ transferred to the ex-
ponential operator is obtained by examining the
behavior of kernels for small ¢. Roughly speaking,
U.(t) is obtained by repeated multiplication of
Jo T.(t) dt. The lowest term in this expression is
proportional to ¢* and contains all powers of A from
one to n. Thus the convergence is limited to times
(") K 1if A < 1 and to times (f\) << 1 if A > 1, s0
that in either case ¢ cannot be very large.
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5. GENERALIZATION OF A THEOREM OF
SAENZ AND O'ROURKE

Any U, can be approximated by a finite power
series

U= 00" = M0, 6w
t ta tr—a
M.(0) = fo dt, fo dty - fo dt,
X Tat,) -+- Tut)).  (32b)
Then the approximation
(U070 o e (33)

always contains all the terms of the lower approxi-
mation

[Vner (O™ e e (34)

The proof is obtained by takingm = 0,1,2, ---,
etc. and comparing the terms.

This theorem was enunciated by S4enz and
O’Rourke® for n = 2, and was used by them to
draw the conclusion that the approximation to the
formula (23) with » = 2 is always better than the
corresponding approximation to the formula (11)
with n = 1. This conclusion is not very sound. The
experience with perturbation theory has shown that
there are certain classes of terms which, if taken to-
gether, cancel each other or otherwise produce rea-
sonable behavior leading to a good approximation,
but if all of the group is not kept together then the
approximation fails. These groupings of terms de-
pend crucially on the detailed physical properties
of the system and hence the mere fact that one ap-
proximation contains more terms than another tells
us nothing about their relative merits.

6. A SF;I%I]I)ENCE OF FORMULAS
LEADING TO EQ. (9)

An improvement over the formulas of the previous
sequence can be obtained if at each step instead of
transferring a single power of ¢ to the exponential we
transfer whole power series (operator functions of
f) to the exponential. One needs some criterion for
selecting these power series. It is likely that con-
siderations of the physical situation would be very
useful in this connection. The very minimum of the
physical consideration furnishes us with the param-
eter A, which already leads to interesting results.
It is not necessary here to assume that A is small.

As before the first step is to write

U = w®e”; w) = U
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which leads to the perturbation formula (11). In

the next step we transfer all the terms linear in A
to the exponential and write

¢
U, = U, exp [x f dt, b(tl)] = U™ (35)
[1]
which gives

a
o U = UT,;

Bt %2(0) = 1,

(36a)
A2 1N 2
52(0 = ['2—' [0'1, b] + ’?j {[0'1: b]

Floadl] - o G

which gives for U,

XZ t [ 2%
U =1+5% [ an [ by [b), b(e)] + -
s Yo ]
=14+ )\20.2(,5) + ..., 37)
from where we take the next step,
Uy = Uge™ ™., (38)

Proceeding in this way at nth step, the equations are

U(t) = cum(t)e)"‘"‘n—x(l) e ek'v.(l)e)‘n(t)eat’ (39)
0
7 = LOLO; WO =1  (40s)
or
WO =1+ [ dhue)st)  @ob)
with ‘
5 (t —_ e)\“"vn-l(t)s _le—).'—‘rn—l(‘)
+ e\'“"n—l(‘) %e—)"‘“fu—x(l) ;n> 2, (40c)
3.(8) = \b(), (40d)
and
¢
ou(d) = lim (r" f 5.(0) dt). (40¢)
A0 0

On carrying on the process indefinitely, Eq. (12)
evidently results, which is equivalent to Eq. (9).

The second stage of this sequence is similar to the
second step of a procedure described by Green® for
solving the density matrix equation.

The first term in the power series of 3,(¢) is pro-
portional to \"**! so that the series for 4, can be
valid for time ¢ << A7* for large n. At least for small
values A the present sequence may be considered an
improvement over the previous sequence.
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7. COMPARISON OF THE TWO SEQUENCES:
Iim t— ©

The main reason for considering the present se-
quence an improvement over the previous one is
the greater facility it provides for physical intuition.
If a and b were appropriate quantum mechanical
operators, then in the language of quantum me-
chanics b(f) = ¢*‘be™* would be the time-dependent
Heisenberg operator for physical quantity b cor-
responding to the “Hamiltonian” a/s. Comparing
the two sequences one sees that, whereas in the first
case one was dealing with the instantaneous values
of the operators at time { = 0, in the present case one
deals instead with the integrals over the whole in-
terval zero to ¢.

The fact that one deals with integrals rather than
instantaneous values leads one to expect that aver-
age effects will be more adequately represented by
the second formula. For instance, it is frequently
required to find the behavior of U(f) or some re-
lated quantity as { — . For this case difficulties
of ordinary perturbation formula are well known
and the formulas of Sec. 4 offer no advantage. In
particular, in the latter case it is not easy to see
how various powers of ¢ in the formula are to lead to
a finite result in the limit. In contrast, the formulas of
Sec. 6 make it very plausible that such a limit could
exist and be finite, at the very least they show that
it would happen provided integrals of b(t) and various
commutators exist, since the exponential operators
always exist if their exponents do.

In formulas of both sequences, the approximations
obtained by putting U, = 1 or U, = 1 give unitary
operators if a and b are anti-Hermitian. This prop-
erty is desirable in some physical problems.

8. DERIVATIVES OF THE EXPONENTIAL WITH
RESPECT TO ) AND THEIR RELATION TO g¢'s

Since
eAfeAte—Ar = eAC, (41)
Eq. (11) can be converted to
(A = . O L GG B () et 42)
with
X(r) = e*"Xe™", 43)

which means that the operator exp A¢ can be deter-
mined completely, provided the operators a(r) and
b(r) are given for any single value of 7, the point
7 = 0 having no special significance. This result
again could be anticipated from physical considera-
tions. A similar modification of other formulas could
be made.
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From (12) we obtain

eqy’(t) tA

A+ed
e(+e)¢= ce e,

ee"a',.'(l) .. (44)
where ¢! has the same structure as o, except that
b(t) is everywhere replaced by b(f); for instance,
t
oA = [ dt,biw). (45)
0
Then using the basic definition of the derivative
one gets with 4 = a + b,
_d_ PR le(A+=b)¢ — A _ ft "
e = 111:)1 =, di, b(t)e™'.  (46)
This is 2 much more compact expression than would
be obtained by differentiating the power series (5)
or (10). The same power series for the derivative can
also be obtained from (46). It follows in general that

Lo o [ [
L _fo dt, fo at, f dt, b(t,)
X bt -+ b(t)e,  (@47T)

a result which makes sense immediately since Eq.
(10) is actually the Taylor expansion of exp At.
Introducing the quantities

do(t) = [(@/d\)e* 1, (48)
we obtain from Egs. (16)
0'{ = dl; (493:)
1
o} = 21 d, — d3), (49b)
1
0'; = gi (d3 - 3d2d1 + 2d?), (490)
ol = %(@ — 4dyd, — 32
+ 9d.d; + 3did, — 6d7). (49d)

These terms have a certain resemblance to the
derivatives d"(In z)/d\", when z is put equal to
¢** after differentiation. Evidently when & and b
commute d,(t) = b"", and all o} vanish forn > 1,
as required.

If for some particular problem one can assume
that a particular derivative is small then by as-
sociating a parameter with it, it would be possible
to generate new sequences of approximations in a
manner very similar to the ones already illustrated
in Secs. 4 and 6.

9. OTHER SEQUENCES
The essential process is to write T, = T, 4+ T?' in

aU./ot = U.T. (50)
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and set
U,‘ = U,H.IGT-,o (51)
Then U,., is given by
(a/at)Un+l = n+1d n+ly Uﬂ+1(0) = 1:' (52)

Towy = ™' T ™ + ™' (8/0) ™ .

The choice of separation of 77 is quite arbitrary
at each step so that a great variety of formulas is
possible. Green® has considered a sequence in which
at every alternate step 7', is the diagonal part of
the kernel. Although he deals with the solution of
density matrix, a comparison is however possible.
It appears that he has not taken into account the
t-dependence of the diagonal parts in his scheme;
otherwise such a scheme may indeed be useful for
some purposes.

10. THE EVOLUTION OPERATOR OF
QUANTUM MECHANICS

If H, is the noninteracting part of the Hamiltonian
and V the interaction then the evolution operator'
in the interaction picture is defined as

U(t tl) = e(il/*)Hoe(—it/h)He(+it'/'h)He(—“’/ir)Hu
= UT'OU.(), (54)
provided U, is given by (19) and
H, = %a; V = %b;
(55)

H=H,+\V = ;?A.
The integral equation satisfied by U(, t') is
. t
e, vy =1-% [ ar VUG 1), 66
‘I

which is entirely analogous to the equations pre-
viously considered since ' does mot play any es-
gential role. In formulas of type (8), instead of
powers of ¢ alone we shall have combinations of
powers of ¢t and ' which arise from integrals of
the type [ "dt. But the formulas similar to those
in Sec. 6 will retain their compact form; in fact,
we shall have

-\ 2 t £ 2
U@, t') = -+ exp [% (_%) ‘/; dt, , dt,

X [V(L), V(tz)]:| exp [—% [ v dtl]- &7)

10 For example, see S. S. Schweber, H. A, Bethe and F. de
Hoffman; Mesons and Fields (Row, Peterson and Company,
_Evanston, Illinois, 1955), Vol. 1.
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For problems in which the perturbation changes
neither too suddenly nor too slowly this formula
could perhaps be a better basis of discussion than
the ordinary perturbation theory. The feature which
promises a more rapid convergence is the appearance
of the commutators rather than merely the products
of V(tf)—apart from the fact that they occur as
arguments in exponential funections. This is not to say
that actual evaluation of these operators will be
easier.

The same formula with different limits of integra~
tion describes the S-matrix, as

8 =UMHe, —). (58)

11. A PROBLEM IN STATISTICAL MECHANICS

The type of advantage offered by these formulas is
illustrated by means of a simple example. The only
remarkable thing is that an approximation suitable
to a given situation is obtained. We consider only
the first term, and say nothing about what may hap-
pen on including higher terms. The practical in-
terest of the example is quite limited.

Consider a one-dimensional classical motion of a
particle in an external field. Then the Hamiltonian is

H=E=13%"+ug; m=1) (59
and the Liouville operator
dH o dH 9
L = ap 9q - (60)

%ap

The development of a classical ensemble is described
by the operator

exp (L) = exp ({(pd, — 9.0)3,)) (61)
so that @ = pd; Nb = —(9.0)0,; hence
b(t) = —e™ ()0, 7"
= - > a-n o), @
since
[aw (aav)] = (3311),
from which

fo ‘ b(t) dt, = % [tv(q + pt) — % f " dgq v(q)]aq

+ % [o(g) — o(g + pO)ld,.  (63)

The coefficient of d,, although somewhat com-
plicated, would presumably be small in suitable cir-
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cumstance; so that, in the case v(z =) vanishes, we
have

op[s [ bt) d) = exp [0/p3). (69
This operator has the interesting properties

e(u/ﬁ)a» = [1 + a

+ 8,56,+ --~:|p =@ + )} (65

b
=

and

(v/p) ape—iv’ = e~h’-—n(o) .

(66)
In case it can be shown that the other terms from
exp (tL) give no contributions when applied to these
functions, simple interpretations can be given. Thus
(65) is an expression of conservation of energy $p2 =
ip? + v(go) and (66) shows that a Maxwellian dis-
tribution of momenta at a time ¢ is changed, under
the influence of interactions, to a Maxwellian dis-
tribution of energiesat { = .

e

APPENDIX
Making use of the identity

(L?t )-O—Q+2![Q’Q}+3;[Q7[Q: QB““

- [awesare,
in Eq. (40c) we have
5.8 = {3n-1(t) + A on1; Taea]

+ 2 Loy [y Bl + - }

{x‘*‘ st o e, il o (A2

Since by Eq. (40e)
Jpmy = ”_l&n—l + “tt

the leading term in 3, is proportional to A\, as ex-
pected. In addition, it is seen that the coefficients
of the powers \" to A*** in 3, and J,-, are identical.
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That is, coefficients of \*** to A>*™* in 3,,, and 3,
are identical, so that the coefficients of \**® and
A**"! generated in computing J, are carried along
unchanged until they become the first terms in
Jgn-z and Jg,—;. Thus we have the important result
that a computation of 3, for n > 2, gives us the
quantities ;.- and s, ! Of course, the calculation
of 3; only yields o,.

A recursive relation between derivatives of o,
can be established directly as follows: Consider a
solution of the form

U= ++-¢% .. g%%%%%, (A3)
Then
au
G = UA=Ulgp+e A
+ e %% 9 ge%e? + .-, (A4)
where
d 0 R
q” S e—ou ,a_t_eon —_ da eaQnQne—an. (A5)
- -1

The solution (A3) can be constructed by solving
the equation

A = q +e“0¢qleOo +3 qu:eOn + e

as follows: For arbitrary operator B,

(A6)

t 1]
Go=B, Q= f Bdl, g = | dee"®Be=®,
0 -1

Qx = 3Q°(A - Go)e “Oc @ = j; Qx dt,

Qz = eal(Ql - 91)e~°x;

----------------------

A7

1
Q» - 60»-;Qn_le-0»-—a _ f daeeﬂn—:Q”_xé-aGn—s-
¢

This relation is independent of A and B and is
determined entirely by the form (A3) and the above
process of solution. The method also holds® when 4
is a function of {—a case we have not considered in
the rest of this paper.

If we start with B = a, Q, are identical with o,
and it follows from (A7) and Eq. (7) of text that all
o, for n > 1, are formed from integrals involving
only the commutators of b(z).
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The precedure of Bhatia and Wolf for constructing orthogonal sets whose elements are “invariant
in form’’ with respect to rotations of axes, is extended to include sets which are defined over the entire
two-dimensional plane. Use was made of the Gram—Schmidt process to derive general expressions for
generating elements of many unique and complete sets corresponding to different circularly sym-
metric weight functions for two cases, where in the first case the elements are only functions of the
real variables x and y while in the other case they are also functions of the real variable r = (22 4 y)t.
These general expressions were used to obtain two new, unique and complete sets corresponding to
Gaussian and exponential weight functions, respectively. The radial polynomials for these two sets
were found to be closely related to the Laguerre polynomials. The generating functions for these

radial polynomials are also given.

I. INTRODUCTION

PROCEDURE for constructing the Zernike
polynomials' which form a complete set for

the interior of the unit circle and which are “in-
variant in form’’ with respect to rotations of axes
about the origin of coordinates has been presented
by Bhatia and Wolf.” The fundamental role which
these polynomials have played in the diffraction
theory of optical aberrations is well known®™® and
recently, Herlitz’”" has used them in obtaining a
solution to the integral equation which relates the
emission coefficient to the emitted spectral intensity
for the nontrivial case of asymmetrical light sources.
An extension of Herlitz’s method to include asym-
metrical light sources of infinite extent has been
carried out’ by making use of orthogonal poly-
nomials which are defined over the entire plane
and whose properties are analogous to those of
Zernike. The procedure for constructing these and
other related sets of orthogonal polynomials will
represent the main topic of discussion in this paper.
The procedure is basically one which makes use
of the Gram-Schmidt’ process to construct the
elements of such sets by orthogonalizing linearly
independent functions whose properties are con-

1F, Zernike, Physica 1, 689 (1934).

2 A. B. Bhatia and E. Wolf, Proc. Cambridge Phil. Soc.
50, 40 (1954)

3 B. R. A. Nijboer, Physica 10, 679 E1947)

“B.R. A, Nijboer, Physica 13, 605 (1947)

s M. Born and E. Wolf, Prmczples of Optics (Pergamon
Press, Ltd., London, 1959

¢S. 1. Herhtz, Ark, F s1k 23, 571 (1963).

7 8. I. Herlitz, Addendum to "Ref. 6 (March 1963).

8 C. D. Maldonado (to be published).

9 R. Courant and D. Hilbert, Methods of Mathematical
th/silcs (Interscience Publishers, Inc., New York, 1953),
Vol. 1.

sistent with those as predicted by the procedure
of Bhatia and Wolf. In this manner we arrive at
general expressions for generating the elements of
many unique and complete sets corresponding to
different circularly symmetric weight functions for
two separate cases where in one case the elements
or polynomials of the sets are functions of the real
variables x and y while in the other case they are
also functions of the real variable r = (z* + »*).

Two new, unique and complete sets of orthogonal
polynomials corresponding to Gaussian and expo-
nential weight functions, respectively, were obtained
from these general expressions and the explicit results
for the radial polynomials of these sets were found
to be closely related to the Laguerre polynomials.
The generating functions for these radial poly-
nomials are presented and use is made of them to
obtain an expression which relates the radial poly-
nomials of both sets.

II. ORTHOGONAL SETS

We present here a procedure for constructing
polynomials (not necessarily real) which form com-
plete sets on the entire two dimensional plane and
whose elements are “invariant in form” with respect
to rotation of axes. Before this is done, it is im-
portant that the meaning of the term “invariant
in form” be clarified. For this we refer to the paper
by Bhatia and Wolf in which they have coined the
phrase “invariant in form” to mean that when any
rotation

z' =z cose + ysin g, @.1)
—zsin ¢ + y cos ¢,

1935
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is applied, each element of the set, which we shall de-
note by V(z, y), is transformed into an element of
the same form, i.e.,

Viz, y) = Gl)V@', ¥), @2

G(p) being a continuous function with period 2=
in the angle of rotation ¢ and satisfies the boundary
condition G(0) = 1. Also in their paper, Bhatia
and Wolf prove (see Theorem 1) that if V(z, %)
is a polynomial of degree n then it can be expressed
in polar coordinates (r, ¢) as

Valr cos o, rsin ¢) = R.(r) exp (ile),  (2.3)

where [ is an integer positive, negative or zero and
Ri(r) is a polynomial in r of degree n, containing
no power of r lower than |I|; moreover, R,(r) is an
even or odd polynomial according as [ is even or odd.

Actually one can show that there is an infinity
of such sets whose elements are in accord with
this theorem, depending on the manner with which
the linearly independent functions

f11+4

exp (ilp), « -+
2.4

are ordered when the polynomials, Vi(r cos ¢, r sin ¢),
are constructed from them by the Gram-Schmidt
process. Of this infinity of admissible sets we will
concern ourselves with that set which is obtained by
orthogonalizing the sequence of functions in the
order as shown in Eq. (2.4), since according to
Theorem 2, which Bhatia and Wolf prove in their
paper, it represents the one and only set which
contains a polynomial for each permissible pair of
values of n (degree) and 1 (angular dependence),
i.e., for integral values of n and [ such that n > 0,
120,n2 |7| and » — |{| is even. It is important
to note that this uniqueness theorem is true only
relative to the weight function which is chosen for
carrying out the Gram—Schmidt process.

The Gram-Schmidt process for constructing the
elements of this unique set as an ascending sequence
of polynomials in the degree n» by forming linear
combinations of the functions in the order as shown
in Eq. (2.4) and requiring that the elements of the
set be normalized and orthogonal with respect to a
circularly symmetric weight function K(r), i.e.,

' exp Glp), ' exp (ilo), r

© 3T
f de dr rVi(r cos ¢, 7 sin ¢)
0 0

X V5 cos o, rsin o)K(r) = 8565, (2.5)

where ~ denotes complex conjugate and 6 and 6%
are Kronecker symbols, is a straightforward iterative
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scheme which we can compactly write as

Viraulr cos ¢, 75in ¢) = exp (Eime)Ratu(), (2.6)
where
RETA() = (1/20)h"Ch8%(0), @2.7)
= -4
cr = { f dr r2“+l[S'£(r)]2K(r)} , (2.8)
nr) = + ; Ap2Sr (), 2.9)

ADY = —-( f dr r“’"”’“S,’,”.,,(r)K(r))
]

x ([ arrisorkn) @1

m= |l|Jandn = m + 2kform,k =10,1,2,3, - .
For a given value of n the unique set generated by
Eq. (2.6) contains (n + 1)(n + 2)/2 linearly inde-
pendent polynomials of degree < n. From this it
follows that every monomial 2y’ (: > 0, j = 0
integers) and consequently every polynomial may
be expressed as a linear combination of a finite
number of elements of the set. Then by Weier-
strass’ theorem® on approximations by polynomials
we conclude that the set is complete.

A. Unique Set for K(+) = exp (—r?)

There are many unique and complete sets, one
for each specified weight function, which are de-
rivable from Eq. (2.6); however, we will restrict
our attention to that set which corresponds to the
circularly symmetric function K(r) = exp (—r%),
since this set was instrumental in extending the
method of Herlitz to include asymmetrical light
sources of infinite extent.® The procedure for con-
structing this set is an iterative scheme which makes
use of Eqgs. (2.6) to (2.10), starting fromk = 0, 1, 2, 3,

-, ete. for a given value of m. The computational
details are lengthy and the end result for the radial
polynomials is an explicit expression of the form

R:»rzk (T)

= (=1 A/= &Y (m + BHYLIE),  (2.11)
where’
W) = B gt e e

denotes the associated Laguerre polynomial of argu-
ment 7°. A few of these radial polynomials normalized
10 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G.

Tricomi, Higher Transcendental Functions (McGraw-Hill
Book Company, Inc.,, New York, 1953), Vol. I, Chap. 10.
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TapLe I Radial polynomials -H[(m + B)/ENRL2ax(r)
<3

for m,
k
m 0 1 2 3
0 1 -1 i —-2r2+1 0 — 4 £ 32 — 1
1 r 2 —2r 25 — 324 3r @1 — 2r% 4 673 — 4r
2 ot =32 fr® — 4t 62 ir8 — 5% 4 107 — 1072
3 73 18— 4rd L7 — 5r5 + 1077 §r® — 3r7 4 15r5 — 20r8

as 7i[(m + k)!/kP R, (r) are compiled in Table I
form, k < 3.

We now make use of the well-known generating
function for the Laguerre polynomials given by’

> 413w = (- e (2,

which is valid provided |z| < 1, to arrive at a gen-
erating function for the radial polynomials of Eq.
(2.11). To do this we set z = 7° in Eq. (2.13) and
solve for L73(r*) in terms of R:™,,(r) from Eq. (2.11)
then upon substitution into Eq. (2.13) we obtain

> (@A B g, 0

k=0

(2.13)

= (%) ™1 + 2)~"*" exp ((lzi z)) (2.14)

as the desired expression for the generating function
for the radial polynomials, B:7,.(r).

II. RELATED ORTHOGONAL SETS

Up to this point in the discussion we have re-
stricted our attention to orthogonal sets whose ele-
ments are “invariant in form’’ with respect to rota-
tions of axes and are functions of the real variables
z and y; now we wish to consider related sets whose
elements are also functions of the real variable
r= (@ + )L

The procedure for constructing the elements of
such sets is similar to that as given in the previous
section. For example, the “invariant in form’ prop-
erty allows us to use Theorem 1 (Ref. 1) to write
a typical element of any set, which we take to be a
polynomial of degree = in z, ¥ and r and denote it as
W (z, y, r), in polar coordinates as

Qu(r) exp (ily),

where again [ is an integer positive, negative or zero
and Q!(r) is a polynomial in r of degree n such that
it contains no powers of r lower than |!|. The poly-
nomial Q!(r) differs from the previous radial poly-

Wi(r cos o, rsin o, r) = (3.1
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nomial Ri(r), in that it no longer is an even or an
odd polynomial according as I is even or odd.

It can be shown that there is an infinity of such
sets corresponding to the infinite possible ways
with which the sequence of linearly independent
functions

r'*! exp (ilp), r'*'** exp (ilp), r'''*? exp (ilo), - -
3.2)

can be ordered when the elements of a set are con-
structed from them by the Gram-Schmidt process.
From this infinity of allowable sets we will again
restrict our attention to that set whose elements
are obtained by orthogonalizing the sequence of func-
tions in the order as shown in Eq. (3.2), because
aceording to Theorem 2 (Ref. 1) it represents the
one and only set which contains a polynomial for
each permissible pair of values n and [, ie., for
integral values of n and 1 such that n > 0,1 20,
and n 2> ||

The Gram-Schmidt process for generating the
elements of this unique set such that they are
orthonormal with respect to a circularly symmetric
weight function K(r), i.e.,

f f do dr 1 W(r cos o,  sin ¢, 7)
[1] 0

X Wr cos ¢, r sin o, NK() = 8565,  (3.3)

is an iterative scheme which is compactly given
by the following expression:

Witir cos o, rsin g, 1) = exp (Lime)Qnti(), (3.4
where

Qnnar) = (1/2m)%"BIP3(),

= (f dr """“[P':@)]”K(r))'*, (3.6)

3.5)

P0) =7 + 2 DRiPL®, ()
rr = —( [ a P (OKG))
x ( [ a PRPLOPK®) o 68

m=|l|landn =m+ kform,k=0,1,2,3, ---
Now one can easily verify that for a given value
of n the set generated by Eq. (3.4) contains (n + 1)
linearly independent polynomials of degree <n; and
hence by a similar argument based on Weierstrass’
theorem on approximations by polynomials it can
be shown that the set is complete.
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A. Unique Set for K(y) = exp (—7)

Of the many complete and unique sets correspond-
ing to different weight functions, we use as an
illustrative example the set which corresponds to
the weight function K(r) = exp (—r). For this
chosen weight function the Gram-Schmidt process
of Eq. (8.4) yields the following explicit expression:

() = (=1*@/20)}
X [kl/@m + k& + DL,

for generating the radial polynomials of this unique
set, where L;™**(r) is the associated Laguerre poly-
nomial of Bq. (2.12) with m and +* replaced by
2m -+ 1 and r, respectively. In Table II a few of

(3.9)

Tasie I1. Normalized radial polynomials
@oi2m + k& + DI/ENQL(r) for m, k < 3.

k
m 0 1 2 3
0 1 r~2 $2—3r +3 8 — 212 L 6r — 4
1 r 2 ~4r 4r¥ — 52 4+ 10r $* —3r% 4+ 1572 — 20r
2 17 3 6 3t — Trd 4 21 k% — 4yt 4 285 — 56r?
3 1% 74— 8% dy — Ort 4 36r5  drS — 5rS - 451 — 12078
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these radial polynomials normalized as
@Eoi@Em + k + DYENPQIT.()

have been compiled for values of m and k& < 3.

The generating function for these radial poly-
nomials is obtained by replacing =z and m in Eq.
(2.13) by r and 2m -+ 1, respectively, then sub-
stituting L3™**(r) in terms of @57:(r) from Eq. (3.9);
this gives the result:

Y 1 3
3 (@mtht DlYorgengy

2

- (E)ra e e ((1 :Lz))

Also, if we replace » by #° in this latter expression
and m by 2m + 1 in Eq. (2.14), then compare the
resultant expressions we obtain

Q0% = Roina0) (3.11)

as a relationship which exists between the radial
polynomials of the two unique sets which we have
chosen to consider in this paper.

(3.10)
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The method developed by Case is used to solve four time-independent, one-speed problems for
neutron transport in a homogeneous medium where the scattering function is linear in the cosine of
the scattering angle. The solutions to the albedo, Milne, Green’s function, and constant isotropic
source problems for a half-space are facilitated by the use of half-range bi-orthogonality relations
between the eigenfunctions of the homogeneous transport equation. Expressions gre also derived
for the emerging angular densities and the densities and net currents on the surface of the half-space.

I. INTRODUCTION

HE Case approach to solving neutron transport

problems utilizes an expansion of the neutron
angular density in terms of the eigenfunctions of the
homogeneous transport equation. The set of eigen-
functions was first shown to be complete for the
case of isotropic scattering of one-speed neutrons.!
Using these results, answers to many problems were
obtained.'® The completeness theorem for one-speed
neutrons was extended to the case of anisotropic
scattering by Mika’ and explicit results for the Milne
problem with linearly anisotropic scattering were
found by Shure and Natelson.”

Recently, orthogonality relations between the
eigenfunctions were observed® which simplified the
solution of one-speed problems with isotropic scat-
tering. An extension to the case of linearly aniso-
tropic scattering was also indicated at that time. It
is this approach which is followed here.

An attempt towards further generalization has
recently been made.’ It appears that the eigen-

functions generally obey a set of bi-orthogonality

relations of the same form as mentioned in Ref. 8.
If the seattering function is of order N in the cosine
of the scattering angle, the eigenfunction ¢,(u) and
its “adjoint” ¢,(u) differ by a term }ecwB(v, p),

* Present address: Institute of Physics, University of
L]ubl)ana, Ljubljana, Yugoslavia.

M Case, Ann. Phys. (N. Y.) 9, 1 (1960).

*K. M Ca.se, Recent Develo nts in Neutron Transport
Theory, Mlctha.n Memorial Phoenix Project Report, The
Unwersxty of Michigan (1961).

3M. R. Mendelson and G. C. Summerfield, J. Math,
Phys 5, 668 (1964).
TG Mitsis, Nucl. Sci. Eng. 17, 55 (1963).

5N. J. McCormick and M. R. Mendelson, Nucl. Sci.

Eng 20, 462 (1964).
sJ. R. Mika, Nucl. Sci. Eng. 11, 415 (1961).
(19;45 Shure and M. Natelson, Ann. Phys. (N. Y.) 26, 274

81, Kuider, N. J. McCormick, and G. C. Summerfield,
Ann Phys. 30, 411 (1964).

°N. J. McCorrmck “One-Speed Neutron Transport
Problems in Plane Geometry » Ph.D. thesis, The University
of Michigan (1964).

where B is a polynomial of order (¥ — 1) in both
variables. A rigorous proof of these two statements
is still lacking. In any event, the computation of
B(», &) would in general be very tedious. Only in two
cases is the situation comparatively simple: in that
of linearly anisotropic scattering (¥ = 1) and in
that of a nonabsorbing medium with N = 2.° We
will restrict ourselves to the first case.

Sections II-IV deal with an absorbing medium.
After presenting the bi-orthogonality relations (Sec.
IT), we apply them to four standard half-space
problems (Sec. ITI): the albedo, Milne, Green’s func-
tion, and constant isotropic source problems. A
special calculation (Sec. IV) leads to simplified
formulas for the emerging angular densities and
related quantities. In Sec. V, the first three problems
are solved for a nonabsorbing medium.

II. DEFINITIONS AND BI-ORTHOGONALITY
RELATIONS

The transport equation to be solved, written in
the usual notation, *7 is

I:n 2+ 1]¢(x, ")

1
=5[ n+wmNE W g O
where ¥(z, u) is the azimuthal integral of the angular
density. Here —1 < b < 1, and we choose ¢ < 1,
deferring the case ¢ = 1 until Sec. V. For the homo-
geneous equation, separation of variables is achieved
through the ansatz

¢(x; I‘) = 3—2/'90»(#): (2)

where the eigenfunctions ¢,(u) are normalized such
that

f_ 11 o(u) dp = @
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There are two kinds of eigenfunctions. The con-
tinuum modes, belonging totheinterval -1 < » < 1,
are given by’

o) = 30 dop) P [ — )71 + MG)SG — ), @)
o) = 1 —;—"Pf_'l' ) 4,

1V — f
= d@)[1 — ewtanh™ »] — b1 — ¢)%*, 5)
dow) = 1 4+ b — cu. 6)

[The symbol P in Eq. (4) is a reminder that we must
take the Cauchy principal value of any integral over
v or p.] Furthermore, there are two discrete modes,

o) = Fovo d(kwou)/ (o F 1), @)
belonging to the two real roots,® +v,, of:the equation
A(:l:Vo) = 0, (8)
where
1
A =1-% [ dew g,
neTE ©

= d@®)[1 — cztanh™ (1/2)] — b(L.— c)*".

It will be useful to know the derivative of A(z)
atz = vy

o __ cd(vs) (1 — c)d(3v3)
A = volrp — 1y B Vod("?i) . 10)
‘We also infer from Eq. (9) that
A=) =10 — o)A — 3cb). (1)

The value of \(») is related to the boundary values of
A(z) on the cut (—1, 1) by the equation

A*p) = }im0+ AW £ e (12)

= \p) £ 3revd(), -1 <y<1
As was pointed out in Ref. 8, instead of orthog-
onality relations we now have bi-orthogonality rela-

tions for the eigenfunctions ¢,(x) and ¢, (u), with
“adjoints” of the form

@) = o,(u) + 3B,
P.(u) = @.(u) £ 3ov,B.

These relations are proved in much the same way as
those for isotropic scattering, and at the same time
the value of the constant B is derived.

The method involves the use of the functions’

1 1 ', A*Gw) d
X@) = 7 exp [271],, mfi%;—f—z] . (14)
® o X'w) _en X (w)
2 A7) 2 AW (15)
= Jeu[A(@)fs — w)X(—p)]™, 0< <1,

(13)
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and of the moments of the latter,

v = [ 2" da. (16)
In addition, we need the identities”
X@X(—2) = AR)/0h — £)M(=), (A7)
X@o)X(—v) = —A/(v5)/200A(), (18)
X*(0) = 1/wA(=), (19)
[ 19 4, - x0, 20)
P f I OL()] du
o VT u
= —Q2/oNnGE), 0<»<1, (21
[ 46 a6 du = tim (—eX@) = 1, @2
¥-1 + bl — v = X(0), (23)
d@o) dF°) = (1 — 0)/voA(=), (24)
where
7 = 71/%. (25)

These identities help us to show that bi-orthog-
onality in 0 < g < 1 among the set ¢.(u), ¢,(u),
0 < » < 1, and the adjoints is produced by the weight
function (vo — w)y(u). We also find that B must be
chosen as

B = b1 — ), — 7)/dP). (26)

Let us note that the quoted weight function is
closely related to Chandrasekhar’s H-function’:

o — w)v(w) = FeulA(«)]7*H{p).

The bi-orthogonality relations, and a set of related
formulas useful in applications, are listed below
(where 0 < » < 1and 0 < »' < 1). In order to save
space, we use in some of the formulas the symbol
£ for either »' or »,. Correspondingly, ¢:(u) denotes
either a continuum eigenfunction or ¢, (1). Products
of two singular eigenfunctions will be understood
in the same sense as in Ref. 8.

@7

[ 0636 6w — wvnte)
= — ML GA GG — ),  (28)

[} 06,660 = mrd d = 0, (29)
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[} 036,600 — ) du = o, (30)
[ 01636, — i) s
= —(deve)’ X (o) dG3), (31)
[} o260 = wyrtsd
= (Lpp)? _._i’ﬁ_:”l___
&) Yoo — ey ? @
[ o660 — i) d
= ok X(—o(—D),  (9)
[ oewd6a0 ~ uyrted
_ (@) el
-6 e @
j; 1 o=y (W=, W) — w)y(w) du
o1 o e o &)
-5 5t - Y et e ) o
_[) l P- (W)@, (1)vo — w)y(u) d
oo o) —)5
= 2 [2 A(w)(vo __ V)’Y(V) 2V0X( ”0)‘P+(V)] 3 (36)
[ eudten = wned
= 3l — /M=o dow), @)
[ 6060 = wyrte) du
_o_1 o 1 _1l—c
S rolr=rr b
[} #d60 — wyrty 22
= §[A(=)]7A + By,  (39)

[ o0 — W) e

~¢{l=-B o 1 :
= 2{[A<oo>]"2 2 A(=)on — v)y(u)} (40)

Through the use of these relations, we can express
the results for typical half-space problems in terms
of the functions X or y and the moments of the
latter. The numerical evaluation of these functions,
for any given ¢ and b, may be performed by iteration
of the nonlinear integral equation of Shure and
Natelson.”
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III. SOLUTIONS TO STANDARD HALF-SPACE
PROBLEMS

We wish to determine the angular density for the
(a) albedo, (b) Milne, (¢) Green’s function, and (d)
constant isotropic source problems, all for the half-
space £ 2> 0 and ¢ < 1. These problems are defined
by the following source and boundary conditions:

0, (), (b)
g = 3@ — 20)(u — po) (0) (a1)
L @
[z, 1)]eee — {bounded, OXOXO R
<P-(ﬂ)e”’°, (b)
v, u) = {50‘ — ), &>0, @ “

0, w> 0. (b)'(d)

The desired solution is expanded in terms of the
eigensolutions (4) and (7). If ¢ # 0, one further term
has to be added, namely the solution of the cor-
responding infinite-medium problem. Thus we see
that the conditions (41) and (42) are met by the
expansion

\"(x; Pv) = f(a:, p.) -+ a+‘p+(“)e~zlv.
+ fa 1 AR, dv,  (44)

where
0, ()
1o, uy = -0 ® 4
Gol@o, o — 2, 1), (0)
1/(1 —¢). @

The function G.(%o, o — z, u) is the solution
to the infinite-medium Green’s function problem for
linearly anisotropic scattering®:

Go(Zo, o — T, 1)
= 2p.(uo)p. ()™ """ [es A (o) d0VG)

1 - lz—z0 /¥
‘P*v(ﬂ-o)‘ﬁu(ﬂ)e >
+ j; vATGIA () dv, T < Zo.

The boundary conditions (43), applied to (44),
lead to an equation of the form (for u > 0)

arne) + [ G ) db = 90,

from which the expansion coefficients a. and A ()
must be determined. Here ¢(u) is 2 known function,
namely

(46)

47)
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a(ﬂ i “0) ’ (a')
Vo) = 0, ) — 10, ) ¥lw) = { - ®) (48)
) "’Gw(xo; o = 0, l‘); (c)
-1/ ~— ¢). GN]
Use of the half-range bi-orthogonality relations of Sec. II immediately gives the following results:
a. = R/[~Gow)"X(o) d@o)], “9)
o — Bo)v(ua)@. (o), (a)
- C‘%X(_V{))é«s(_%): (b)
_ )6 (—p 20_(uo)e "
= ) [X ( o)?’«x-( O) A’ (”o) d(lfz) (50) »
t Cl’_’_ 2 ‘Z-{-('—V,) ?uv’("ﬂ)e_zo/v' V’]
+ [ (5) e W) P 1 ©
cvo 1
=% W@ dow’ @
A@) = 8/[(o — YA R)A™ ()], (51)
(00 — 1oy (o)1), (2)
- CVOVX(_”O)€5+(‘“V)7 (b)
X (s )a (—y 20_(u)e "
g = ) l:X( 0)99+( ) VoAI(Vo) d(vg) (52)
b CL’ 2 @,(—‘D’) ‘P~v‘(ﬂ0)€~h;" ’
+ f <2 ) X(=)o0 — NG VA )L G) P } » (©
v 1
T2 MA@ )y, dlvgp) @

The above expansion coefficients for the Milne prob-
lem were obtained in a different way by Shure and
Natelson.”

The solutions of the four problems are now com-
plete since the angular density is known from (44),
(45), and (49) through (52). The neutron densities
and net currents, defined by

p(x) = f_ 11 Y(x, 1) du,

1

i@ = [ w¥le, u) du,

are easily obtained by integration of (44) and use of
3

o@ = [ fla, 1) da

(53)

1
-2/ e -/
+ e f 4G &, 8

@ = [ 4o, u) du

+a~@b%ﬁm+fﬁwww@}
i)

With the above results, one is able to obtain an
expression for the Milne problem extrapolation dis-
tance, z,, that is the distance from the surface of
the half-space at which the asymptotic density van-
ishes. We see that

P.u(x) = ez/ro + a+e—z/vo (55)
vanishes at x = —2z,, with
2z, = 3, In (—a3"). (56)
Equations (49) and (50)(b) and the identity
G+(—vo) = % dlwo) d(—v9)/d(vsP), 6N
lead to
2o = 3w, In [—X(@,) dwep)/ X (—ro) d(—wP)]. (58)
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IV. SURFACE QUANTITIES

For the emerging angular distribution from the half-space, we need to evaluate the expansion (44) for
# < 0. Its value for u > 0 is given by Eq. (43). The switching from positive to negative u is performed by a
trick; we multiply both sides of Eq. (47) by ¢-,-(u) (vo — u)v{(u)du and integrate. Equation (34) immediately

helps us to the general result (for ¢ > 0):

40, =) = 10, =) + (L) 2@)w ~ w1269 [ 96260000 — W)

(69)

For our four problems, the integral here, as well as the integrals yielding the surface densities and net cur-
rents, are all contained in the formulas of Sec. II. We thus arrive at the following results’:

g; @ Al@)o — po)¥(ue)ve — w)v(w)o_, (1), (a)
4; A=) X(=ro)0 — )y (), ®)
40, =1 = {60 — | Z L TR (s e (60)
Vo) (we ™"
+f0 w0 — DYO)A A ) } ©)
2 ("o - F‘)"/(ﬁ)_
Cit Yo d(”o-f') (d)
2 [AG=)P60 — w1t — B, (@)
QVO{A(OQ)}%X(——I’G)(]' -+ BVD): 03)
— —zo/ %0
p0) = J2A(@) X ()L + B 22O (61)
1 a(oyd [ edmm) + B
A | T oA @ ©
2 1
¢ [w[A(w)]* o) 1]' @
201 - C)(Vo - #o)’Y(ﬂo)/ Yo d("ov); (a)
— 231 — )X (=w)/70 o), ()
o % (— o)™
7(0) a J Yo d(”o"){ ( Vﬂ) CAI(VO) d(”i) (62)
o x'( ﬁo}e zo/¥ }
+[% A=) — A A m P ©
— 2(vy — 7)/cd(ve9). d)

Equation (60){(b) was obtained earlier by Shure
and Natelson.” Equation (60)(a) agrees with the
result of Chandrasekhar'® after the notation is con-
verted.”

The result (60)(a) for the albedo problem shows
also that ¢(0, — u)/k is a symmetric function of
uand po, in agreement with the reciprocity theorem.'

10 8. Chandrasekhar, Radiative Transfer (Dover Publica-
tions, Inc., New York, 1960),

Moreover, a more general form of this theorem'
leads to the conclusion that (0, — u) for the
Green’s function problem differs from the value of
¥(xo, —m)/uo for the albedo problem only in the
interchangement of the variables u and u,. This is
verified by Eq. (60)(c) and the albedo problem
results.

1 K, M. Case, Rev. Mod. Phys. 29, 651 (1957).
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V. THE NONABSORBING MEDIUM

This case is treated separately because for¢ = 1
the two zeros z = =t», of A(z) merge at infinity.
When ¢ — 1, we observe that

w— [~ B — I,
Yo 1,
V-1 V3.

The orthogonality relations of Sec. II must be
divided by », before taking the limit ¢ — 1. With the
addition of some auxiliary formulas, the set of needed
relations becomes

[ rren ) an

(63)

= OO =), 64
[ o-on ) dn = Bren(-06),  69)
[ oo arts)

- vt -], @
[ emtn du = =, (©7)
[ esantn du = b — 5210) ©®)
[ o) du =, ©9)
[ o) du = 370, 10
[ et 2 = 35, @
[ o) 2 = 38 — 110, @)

Nothing here depends upon the anisotropy pa-
rameter b. All the functions involved and all the
formulas are the same as for isotropic scattering.

Since the two discrete modes used before have
now become identical, we choose a new basis which
includes the following two solutions of the homo-
geneous transport equation:

iz, m) = %, e, w) = A — 3b)z — p]. (73)
The expansion (44) is replaced by
1//(3:, H) = f(x) Vl)

tiat [ AQewe . (9
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For the (a) albedo, (b) Milne, and (¢) Green’s
function problems, f(x, ) will be taken as follows:

Jo, @
f(xr P‘) = ‘l’2(x7 M), (b)
Gi(ﬂ;o, e = I, F‘)' (C)

By the choice of (75)(b), the solution of the Milne
problem has been renormalized to unit net current.
The Green’s function for the infinite medium is
chosen such that its value is finite at z — 4+ =,
namely

(75)

f
Go@o, o — 7, 1) = Jltbz(%: ), 2>
‘l’z(x:l‘)'*‘"': z < Ty,
(76)

where the dots indicate the same integral as in Eq.
(46).

The final results for the three problems then
follow through application of the above formulas
and are given in the following list:

29{u) (a)
=, ® @7
Vo, (uo)e ™"
=3 [ e ©
(o) (o) YA A6, @
— 3/4vG)A G)A™() ® s)
Ap) =] 3 {y
4v(ATHA @)
! V’Wv(yv')ﬁo-v’(“ﬁ)e—nh, ’
ﬁ'fo AN AG) P } ©)
2y o) Y86 (6), Bt ®
(0, —p) = 'YZ;/'IH . , (b)
L 19% 2@—-1' #O)E—xa/v
p {1 + AG)A YA G) d”}’ ©
- (79)
©/V3)v(ue) o (@)
0 = 18 " ®) (80)
- (tto e to/V
{1‘*‘zf AGA G)A <>d"}' ©
#0) =JL 0, @ @1
~1. ()0

Again the results (most of them known) are the
same as for isotropic scattering. The only term de-
pendent upon b is the f(z, u) in the cases (b) and (c).
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This agrees with the general observation’ that ¢(z, u) 2 = (1 — 3b)7%. (83)
and the corresponding solution for b = 0 differ only . . Toa1 s
by a term 1bjz if the medium is nonabsorbing. This result is well-known: (1 — 1b)™" is the transport

The asymptotic part of the density for the Milne mean free path and 7 = 0.710446.

problem is ACKNOWLEDGMENTS

pur(z) = (3 — b)z + 37, 82) We are indebted to Professor G. C. Summerfield
S0 and Professor F. C. Shure for helpful discussions.
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tion in agreement with that obtained by the WKBJ method.

1. INTRODUCTION

ANY physical problems can be formulated
mathematically as boundary-value problems

VOLUME 6, NUMBER 12 DECEMBER 1965
An Expansion Method for Treating Singular Perturbation Problems
Avr Hasan NAYFEH
Heliodyne Corporation, Los Angeles, California
(Received 20 May 1965)
Cochran’s method for treating singular perturbation problems is shown to give, in some cases,
expansions which are not uniformly valid. This method is modified and extended to give uniformly
valid expansions. The new method is applied to the problem of heat transfer in a duct to give a solu-
two new variables
E=uz, (2.1a)
n = g(@)/$(e), (2.1b)

consisting of differential equations L(y; z; ¢ = 0
and boundary conditions B(z; ¢€) = 0 depending on
a parameter e. Many of these problems cannot be
solved exactly for an arbitrary e, and hence their
solutions might be sought by perturbation methods.
If there exists an ¢ = ¢ (e can be normalized such
that ¢, = 0) for which the reduced boundary-value
problem L(y; xz;0) = 0 and B(z;0) = 0 can be solved
exactly or more easily, one attempts to construct
the solution of the full problem by simply perturbing
the solution of the reduced problem for small e.
Unfortunately, many of these straightforward ex-
pansions are not uniformly valid because they break
down in certain regions called regions of nonuni-
formity. A problem in which the straightforward
perturbation expansion is not uniformly valid is
called a singular perturbation problem.

Many methods have beeu devised for treating
such problems. In this paper, Cochran’s method’ is
investigated. It is shown that this method gives, in
some cases, expansions which are not uniformly
valid. This method is modified and extended to
give uniformly valid expansions. The new method
is applied to the problem of heat transfer in a duct
and the result is compared with that obtained by
using the WKBJ method.”

2. COCHRAN’S METHOD

In order to effect a uniformly valid expansion of a
boundary value problem L(y; x; €) =0 and B(x; ¢) =0
which has a nonuniformity in the region

z = u = 0lg(e)], lim ¢() = 0,

Cochran transforms the ordinary differential equa-
tion into a partial differential equation in terms of
1J. Cochran, Ph.D. thesis, Stanford University (1962).

2 A. Erdelyi, Asymptotic Expansions (Dover Publications,
Inec., 1955), pp. 78~107.

where g(u) = 0 to reflect the nonuniformity. He
hypothesizes that there exists an asymptotic rep-
resentation of the above problem of the form

Yz = G m 0 = 1 AGnE ) @2)

where each y,.(¢ 7) is bounded independently of e
for all £ and % and

. A
lel—I}(’)l An~1(e) - 0.

To be able to modify and extend this method,
we will apply it to two simple examples.

2.3)

Ordinary Differential Equation—Initial-Value Problem
Consider the problem

EF' +2F)+ F =0, (2.4a)
F(0) =0, F'@) = —1, (2.4b)

for which the exact solution is
F =¢® cos (2 — 1)z, 2.5)

The straightforward perturbation expansion of Eq.
(2.4a) for € < 1 is not valid in the region x = O(e).
Following Cochran, we assume that

F= Zo €"Fn(£:1 77)) (26)
where ¢ = z, n = [g(x)])/¢, and each F, is bounded
for all & and 5. Substituting the expansion (2.6)

in Eq. (2.4a) and equating the coefficients of each
power of ¢ to zero, we obtain

gﬂFOfm + F, = 0,
g,2F1n1’ + Fl + Qg,F()fq + (g’l + 2gI)F07l = 0’

2.7)
2.8)
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92 Fopy + Fy + 2¢'F,q, + (9" + 2¢")F,,
+ 2Fo; + Foyr = 0. 2.9)
The general solutions of Egs. (2.7) and (2.8) are

Fo = Ay¢) cos (n/g") + Bo(®) sin (n/g’)  (2.10)
ro={a0-[(3) + o+ k],
+ g‘;f;, nz} cos (}) + {Bl(E)
(&) + o+ B
_ ‘;‘;{;—' nZ} sin (Z—) @.11)

The condition that F, is bounded for all » neces-
sitates that the coefficients of 4” and » should vanish.
Since 4, and B, # 0,

g" = 0. (2.128)
Using the fact that g(0) = 0, we get
g = czx, (2.12b)

where ¢ is a constant which can be taken to be
unity without loss of generality. Then, the vanishing
of the coefficient of 5 gives

A+ A, =0, (2.13a)
B+ B, = 0. (2.13b)
Hence,

Ao = ae’t (2.14a)
By, = be* (2.14b)

where a, and b, are arbitrary constants. Thus,
F, = ¢ ¥[a, cos 5 + b, sin 5], (2.15)
F, = A,(¥) cos n + B() sin 4. (2.16)

From Eq. (2.9), we find that
Fy = [4,(8) — (A + A, + tboe™Hn] cos 1
+ [By(¥) — (B! + B; — tae )n]sin 5. (2.17)

Since F, is bounded for all 7,

Al + Ay + 3be™t = 0, (2.18a)
B! + B, — ae™t = 0. (2.18Db)
Therefore,
A, = (o, — 3b)e s, (2.192)
By = (b + )", (2.19Db)

SINGULAR PERTURBATION 1947

where a and b, are arbitrary constants. Thus,

F = e"{(ao cosg—z + by sin :—z)

+ e|:(a1 — 3bex) cos% + (b, + dae) sin %]}
(2.20)

The expansion (2.20) is not uniformly valid because
el';, and F, are of the same order in the region
z = O().

Partial Differential Equation—~Boundary-Value Problem

Consider the problem

U, + u,, +u, =0, (2.21)
u(0, ) = fi(y), (2.22a)
uw(l, y) = £®), (2.22b)
u(z, 0) = ¢,(x), (2.22¢)
wz, 1) = g(z). (2.22d)

If € | 0, Eq. (2.21) changes from an elliptic to a
parabolic equation. The reduced equation cannot
satisfy all of the boundary conditions and hence
it is of the singular perturbation type. The non-
uniformity is in the region z = 0(e).

In order to apply Cochran’s method, we lef

W= £ = X Cu ), (229)
where

=1, (2.24a)

¢ =y, (2.24b)

1 =g y)/e 90,y) =0. (2.24¢)

Substituting the series (2.23) into Eq. (2.21) and
equating each of the coefficients of ¢ * ¢, and
¢’ to zero, we obtain

g?uo,,,, =0, (225)
ggul)vm + gloy + 291’“0?7
+ grttho, + g?ulw =0, (2~26)

GiUiny + Gellay + Uor + 208%0gy + Geethon + Uogr

+ 295Uy + Grethy, + Gitlzg, = O. (2.27)

The solutions of these equations are
9 = 9@, (2.28)
U = Aol§, §) + Bolt, e "7, (2.29)



1948

u, = —(Aoz + Aogp) ; + A 0)

+ |:— g;gls 772 + (Bogs — Bog) 37 + B, (¢, g‘):‘e—(”/gl))
(2.30)

- where A,, By, 41, and B, are smooth functions of
¢ and ¢. The conditions that 4, and w, are bounded
for all 4 necessitate that

g’ > 0, (2.31a)
A05 + Ao“ = O. (2.31b)

The expansion obtained above still contains two
arbitrary functions: Bo(¢, {) and g(£).

3. PROPOSED METHOD

As shown in the preceding section, Cochran’s
method does not give uniformly valid expansions
beyond the first term of some singular perturbation
problems. Also, the condition that each y.(& #) is
bounded for all ¢ and 5 is not always sufficient to
determine the arbitrary functions which appear in
the expansions.

In order to develop a method for treating singular
perturbation problems, we note that their uniformly
valid asymptotic expansions cannot be expansions
in the Poincaré sense® because they are expansions
in sequences of ¢, whose coefficients depend upon
e as well as upon z. However, as illustrated by
the two examples which we have considered, the
dependence of the coeflicients on ¢ is in the com-
bination which gives rise to a new variable. Thus,
if we introduce a suitable variable 1 = 5(z; ¢ in
addition to the variable ¢ = 2, a uniformly valid
asymptotic expansion in the Poincaré sense may be
found for a problem which has one nonuniformity,
but now the coefficients of the sequences are func-
tions of the two independent variables ¢ and 7.
Hence, the introduction of 5 transforms the prob-
lem of obtaining a uniformly valid asymptotiec ex-
pansion of a function y(x; €) into finding the straight-
forward asymptotic expansion of §(, 9; €) = y(z; €).

The method consists of the following four steps:

First, we introduce a new independent variable
n in addition to £ = z. If the straightforward
expansion breaks down in the region (x — u) =
Ol¢(e)], where p < o, and lim ,_, ¢(e) = 0,

1= = 3 aGn@. G

3J. G. Van der Corput, Asympiotic Expansion I. Funda-
mental Theorems of Asymptotics (Department of Mathematics,
University of California, Berkeley, 1954).
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Here 8,(¢) = [1/¢(¢)] and 4(z) = O in order to
reflect the nonuniformity, and §,(¢) for n > 1 will
be determined in the course of analysis. If u is
infinite, and the nonuniformity is in the region where

249 = 01, lim¢(9 =0,

we introduce first a new variable # such that
2 = x¢(e).

This transformation moves the nonuniformity to a
finite region and can be treated as above.

Second, the differential equation is transformed
into a partial differential equation of the two in-
dependent variables £ and 5. The functions of the
independent variable z which appear in the original
equation are expressed in terms of # except those
which reflect the nonuniformity.

Third, we assume that there exists an asymptotic
representation of y(z; €) in the form

Ve = 0 19 = D MGG, (2
where

13’3 [Au(e)/An-1()] = O, 3.3)

yo(f; 77): yn(E; 77)/%—1(5: 7’) < o, (34)

forall £ = z and n = 5(z; ¢) where z is in the domain
of interest.* The condition (3.4) is the mathematical
expression of the fact that the expansion (3.2) is
regular in the whole domain of interest.

Fourth, we substitute the expansion (3.2) in the
transformed partial differential equation and equate
coefficients of each function of ¢ to zero. We solve
the resulting equations. The solution will contain
arbitrary functions of the variable £ They will be
determined by imposing the condition (3.4). Now,
we apply this new method to the two examples
previously discussed.

Example 1

To effect a uniformly valid expansion of (2.4)
we let

E = X, (3 5&)

1= 4 500@ + e, G

4 This condition is similar to the elimination of secular
terms used by Kryloff and Bogoliuboff in their variation of
parameters method for treating nonlinear oscillation problems.
See N. Kryloff and N. Bogoliuboff, Introduction to Nonlinear
Mechanics, (Princeton University Press, Princeton, New
Jersey, 1947).
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where #(0) = 0 because the nonuniformity is at
the origin and is of order e. Thus Eq. (2.4a) trans-
forms into

E(Fy + 20'Fy, + ''F,
+ 9°F,, + 2F; + 29'F,) + F = 0.

We assume that

3.6)

F = ) €F.¢, ).

n=0

3.7

Since the nonuniformity in Eq. (2.20) appeared in
the determination of 4;(¢) and B,(¢) from Eq. (2.17),
the function ¢, () must appear in the latter equation
and hence §,(¢) = e Substituting the series (3.7)
in Eq. (3.6) and collecting coeflicients of equal
powers of ¢, we get equations for F,, F,, and F,.
Solving these equations and using the condition
that [F.(§, n)/F.-1(§ m)] < o for all 4, we get a
result which deviates from Cochran’s at Eq. (2.17)
because our method allows for the appearance of
g1 (¢). Thus instead of Eqs. (2.18), we obtain

A, 4+ 24, + b1 +2¢0eF =0, (3.83)
2B] + 2B, — a,(1 + 2¢D)e* =0.  (3.8b)
The solutions of Eqgs. (3.8) are
A, = a7t — Lby(t + 2g0)e7, (3.9a)
B, = be ™t + }a,(t + 2g.)¢7F, (3.9b)

where a, and b, are arbitrary constants. The condi-
tion that F. (g, 1)/F(§, 1) is bounded for all £ leads to

g1 = ‘—%5, (3.10)
because
7(0) = 9.(0) = 0.
Therefore
F=c¢*acosn+bsing + ---, (3.11)
where a and b are arbitrary constants and
7= (xfe) —3ex+ -, (3.12a)
£ =gz (3.12b)

Using the boundary conditions F(0) = 1 and F’(0) =
—1, we get finally

F = ¢ cos (f — %ex) + 0, (3.13)
because
3
13' e”[cos (—13 - 1> T — COoS (2 _1 ex>:H <M,
€ € € 2
(3.14)

where M is independent of e.
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Example 2

The application of the new method to this ex-
ample determines the functions B,(¢ ¢) and g(§).
From Eqgs. (2.29 and 2.30), u,(§ ¢, m)/u(§ & )
is bounded for all 7 = [g(x)]/e, 0 < z < 1if

g’ =0, (3.15)

BOI‘{' haed Bog = 0. (3.16)

Since g(0) = 0 and g’ > 0, the solution of Eq. (3.15)
is

3.17)

where ¢ is an arbitrary positive constant which
can be taken to be unity without loss of generality.
Therefore, to first order

g = ck,

u = Aoz, ) + Bolz, y)e ", (3.18)
where
Aos + Aoy = 0, Bo. — By, = 0,
4L, y) = @), Bz, 0) =0,
Az, 0) = g,(2), By(z, 1) = 0,
Aoz, 1) = g:(2), B0, %) = fiy) — 4.0, ).
(3.19)

4. HEAT TRANSFER IN A DUCT

Consider the heat transfer in a fluid with con-
stant density which is in steady laminar or in steady
mean turbulent motion in a flat duct. The velocity
profile is fully developed and the temperature is
uniform when it suddenly enters a flat duct whose
wall is kept at a different constant temperature.
The mathematical description of the problem in
non-dimensional quantities is

o) oL = 2 [z»(x) %] ., (4l
p@) = 1 + ea Pr/y) > 0, (4.1b)

T, z) =1 for 2 <0, (4.2a)
T, 1) =0 for z> 0. (4.2b)

Here, T is the temperature, v is the velocity, » is
the kinematic viscosity, Pr is the Prandtl number,
en is the eddy diffusivity for heat, z is the longitudinal
coordinate, and z is the normal coordinate. Letting

T(z,x) = y(x)Z(z) and separating variables, we
get the following eigenvalue problem

[p@)y’]" + Nu(@)y = 0, (4.3a)

y(1) = y(—1) = 0. (4.3b)
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Since v(z) vanishes at the wall, it has the form
o) = (1 — 29f(x), f(z) > 0. (4.3¢)

The eigenvalue problem obtained above is called
the Graetz problem.’® Although we derived the
Graetz problem for turbulent flow, the laminar
problem can be obtained from (4.3) by letting
f(x) = p(z) = 1. The problem considered here is
the determination of the first-order asymptotic ex-
pansions of the eigenfunctions and eigenvalues for
A>> 1in (4.3) by using the method proposed in this
paper. The laminar case has been investigated by
Sellars, Tribus, and Klein® by using the WKBJ
method. Since the problem is symmetric, it suffices
to determine the solution in [0, 1} and the boundary
condition 3(—1) = 0 can be replaced by %' (0) = 0.

The straightforward perturbation expansion which
can be obtained by a Liouville’s transformation® is
not valid in the neighborhoods of the zeros of v(x).
The problem considered has a turning point at
z = 1. In order to determine the extent of the
region of nonuniformity, we let (1 — z)A* = z
where z = O(1) in Eq. (4.1a), and choose « such
that the first term is of the same order as the second.
This is so if @ = (%).

In order to effect a first-order uniformly valid
expansion in [0, 1] using the proposed method, we
let

y=1y )+ N u, )+ o, (44a)
£ =z, (4.4b)
1 = N"h(z), (4.4¢)
where
hz) = (1 — z)g(x), gx) > 0. (4.4d)

Equation (4.1a) is thus transformed into a partial
differential equation in terms of £ and %. The func-
tions of the independent variable & which appear
in Eq. (4.12) are expressed in terms of ¢ except
(1 — z) because it reflects the nonuniformity and
is replaced by [\ *"*]/[g(x)]. Substituting the series
(4.4a) in Eq. (4.1a) and equating each of the coeffi-
cients of \** and A*® to zero, we obtain

2 1
L(yo) = W"pYoun + ug—gﬁ o = 0, (4.5)
L(y) = —@h"" + o'W )yor — 20 DYors.  (4.6)

The solution of Eq. (4.5) is

8§ M. Jakob, Heat Transfer (John Wiley & Sons, Inc.,
New York, 1949), Vol. 1, pp. 451-480.

¢ J. R. Sellars, M. Tribus, and J. 8. Klein, Trans. ASME
78, 441 (1956).
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Yo = Au@On'iIv®] + Bo®n* Ty [v®)n'], (4.7a)
where
- [(1 + o1 ! @.7h)
3L gpp’® J° '

Substituting for y, in Eq. (4.6), we get

L@ = — 5 (24P + G + p) A,
+ n*[2Bih'p + (ph'’ + p'h')Bo)J i}
+ v %} [2h'pr* (Ao} + BoJ )], 4.8)

For y:/y, to be bounded for all 5(z; A\), 0 < z < 1,
the inhomogeneous part in Eq. (4.8) must vanish.
Thus,

¥ =0, (4.92)
2h'pAg + (A"’ + p’'A)A, = 0, (4.9b)
2h'pBy + (ph'' + p’'h')B, = 0. (4.9¢)

The solutions of these equations are
Y =¢ (4.10a)
Ao = ao/(Wp)?, (4.10b)
B, = by/(h'p)}, (4.10¢)

where a,, b,, and ¢ are arbitrary constants. The
constant ¢ can be taken to be unity without loss
of generality. Furthermore, the negative sign must
be taken in Eq. (4.7b) so that g(z) > 0. Hence,
the solution of Eq. (4.7b) is

B = —f: [(—ILM%@T dt = u@). (@11)

Thus,

’ll}
Y =TT = A @0 + 0T0w), (412)

where ¢ and b are arbitrary constants.
Imposing the boundary condition y(1) = 0, we
find that b = 0, and hence,

au*

Nearz = 0, My is large and hence y can be represented
asymptotically as

¥
y = (%) al(l — 2°)p]™* cos O — om).  (4.14)

Since ¥'(0) = 0, f(z) and p(x) are even,

sin [Mu(0) — Tzr] = 0, (4.15a)
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or
M =0+ fOr/u0), n=0,1,2 ---.

For the laminar case,

(4.15b)

u(0) = — f "= ™dt= e (4.168)

Hence,
\=dn+ %,

Strictly speaking, the eigenvalues in (4.16b) are
only valid for large n because the entire expansion
is obtained for A >> 1. The eigenvalues (4.16b) agree
with those obtained by using the WKBJ method®
(4 — 25). On the other hand, our eigenfunctions
are given by a single uniformly valid expansion in
{0, 1], while those obtained by the WKBJ method
are given by two expansions—one is valid in the
middle of the duct and the other is valid near the
wall. However, our eigenfunctions reduce to those
obtained by the WKBJ method near the wall and
in the middle of the duct, respectively.

5. CONCLUSION

n=01,2 . (4.16b)

Cochran’s method for treating singular perturba-
tion problems yields expansions which may contain
arbitrary functions. The application of this method
can give expansions which are not uniformly valid.
This method is modified and extended to give uni-
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formly valid expansions. The new method is applied
to the Graetz problem which arises in the problem
of heat transfer in a duct. The eigenvalues thus
obtained agree with those obtained using the WKBJ
method.

Since the major criterion we used in determining
the arbitrary functions which appeared in our ex-
pansions is [y.(¢ 7)/Ys-1(§ 7)] < « for all £ and
n(z; ¢) such that x is in the domain of interest, the
proposed expansion method might break down if
the equation admits solutions which are unbounded
in the domain of interest.” For example, the proposed
method is inapplicable to the problem of deter-
mining the asymptotic representation of the solu-
tion bounded at the origin for A > 1 in

zy”’ +y + Nzl — 2y = 0.

Thus, this method has to be extended or modified
further in order to apply to such problems.
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Generalized solutions to the equations for a massless free field with arbitrary spin are written down.
It is shown that they lead immediately to generalizations of all the usual conservation laws,

INTRODUCTION

EW conservation laws for the electromagnetic

field have been discovered recently by Lipkin.!
Morgan® has shown Lipkin’s conserved third-rank
tensor is a special case of a generalized energy—
momentum tensor density. The procedure adopted
by Morgan was to construct a generalized tensor by
analogy with the usual expression for the conven-
tional T,,. He then showed that the generalized
tensor was divergence-free. We will show instead
that a possibly more basic concept is the considera-
tion of generalized solutions to the usual field equa-
tions. This immediately leads to generalized con-
servation laws. We will then demonstrate how the
conserved quantities of Lipkin and Morgan may be
simply obtained as particular cases of our general
formalism. Furthermore, in addition to the con-
served energy—-momentum tensor and current dis-
played by Morgan, we will show that other gener-
alized conserved quantities may be obtained because
our procedure admits a generalization of all the usual
conserved quantities.

GENERALIZED SOLUTIONS AND GENERALIZED
CONSERVATION LAWS

The equation of a massless free field may be writ-
ten down in the formalism of Pauli-Fierz® or Ham-
mer—Good.* For our purpose it is more convenient
to use the method of the latter authors who show
that the wave equation may be written in the form®

(s,/5) 242 L 2 _ ®

where S is the angular momentum matrix for arbi-
trary spin § = 1,1, % --- and ¢y isa S + 1)

1 D. M. Lipkin, J. Math. Phys. 5, 696 (1964).

2T, A. Morgan, J. Math. Phys. 5, 1659 (1964).

3 M. Fierz, Helv. Phys. Acta 12, 3 (1939); M. Fierz and
W. Pauli, Proc. Roy. Soc. (London) A173, 211 (1939).

4 C. L. Hammer and R. H. Good, Jr., Phys. Rev. 108,
882 (1957).

5In our units 2 = ¢ = 1. Furthermore, Greek indices
run from 1-4 and Latin indices from 1-3.

component spinor. As an auxiliary condition, the
only solutions retained are those which satisfy the
Bargmann-Wigner® criteria of having their spins
parallel or antiparallel to the momentum. Good,”
for example, explicitly shows that Maxwell’s equa~
tions may be written in this form.

Consider any general operator V so selected that
V¥ (z) is a generalized solution of Eq. (1). Thus, we
can write

Y (x) , W(x) _
(5/8) 252+ 205 — 0 @
and
ay'(x) | oY (x) _
where
¥ =TV'y and ¢ = V", @

and where V' and V" are so selected that ¢ and
¥ satisfy Eq. (1).

Good’ has shown how all the usual conservation
laws can be derived quite simply from Eq. (1) with-
out using Lagrangian’s or Noether’s Theorem. He
considers infinitesimal transformations of coordi-
nates®

z, =z =z, + oz
» » “ "y

and the corresponding transformations of the wave-
function

W) — V).
He then introduces a general operator O defined by

Y () = Oy(a).
This enables him to deduce the conservation laws

¢ V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci.
US 34, 211 (1948).

” R. H. Good, Jr., Phys. Rev. 105, 1914 (1957).

8In order to avoid confusion with our already defined
single-prime quantities, we use triple primes here ingtead
of the single primes used by Good.
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GENERALIZED CONSERVATION LAWS

(sb (8&:/8)0¢) + o ®)

Corresponding to the various coordinate transforma-
tions of displacement, rotation, etec., Good obtains
appropriate expressions for Q. The various operators
O when substituted into Eq. (5) give rise to the usual
conservation laws of energy-momentum, angular
momentum, and so on.

Instead of considering Eq. (1) as Good did, we
will consider Eqs. (2} and (8). This enables us to
deduce a generalization of Good’s conservation laws.
We obtain

(‘P‘“Oll/) = 0.

('//’+(Sk/3)0'1/”) + 3 (tﬁ”OW’) =0, (8
which constitute our generalized conservation laws.
We notice that the usual conservation laws contain
only ¢; whereas our generalized conservation laws
contain both ¢ and ¢"’.

As an example, we will discuss in detail the gen-
eralization of the energy-momentum tensor 7T,, for
the electro-magnetic field. The generalization con-
sists of replacing F and H by E'("’) and H'(""). Thus,
Maxwell’s equations for the free electromagnetic
field in vacuum may be written

F] 3 .,
cun g B = =5 H, (7a)
8 d
€k 5;1 ng = B’iEiy (7b)
@/0z)E, = 0, 7e)
d/dz)H{ = 0, (7d)

and we have a similar set with the primes replaced
by double primes. Associated with ¢/ is a generalized
antisymmetric field tensor F/, and a generalized
potential A/ defined by

1#; = 7:(— a‘makr + %ékw)F;H (83')
and
, _ 94, 9A;
Fi az, oz, ’ (8b)

and we have similar quantities with the primes re-
placed by double primes, This immediately enables
us to construct’ a conserved energy-momentum
tensor T, given by

Ty, = —3(Fl,Fl + FIFYY), ©

s For details of this construction, see for example
Synge, Relativity: The Spectal Theory (North—Hollan& Pub—
lishing Company, Amsterdam, 1956), p. 323.
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where F% is the dual of F/,. In the particular case of

V= 0&1 aas e aan; V" = aﬂx aﬂa Tt aﬂm’ (10)

we see that T',, is identical with Morgan’s conserved
tensor Tivareeeangsepn We wish to emphasize two
points. First of all, Morgan’s tensor is a particular
case of our general T,, as given by Eq. (9).
Secondly, Morgan proceeded by initially postulating
a Tivareeeange-pn and then showing that it is con-
served while our approach emphasizes the basic
concept of generalized solutions to the field equa-
tions. From this concept a conserved 7,, follows
imediately in a similar manner to the derivation of
the usual 7',, from the field equations with the usual
solutions.

Morgan has shown that Lipkin’s third-order tensor
is a particular case of T\, a,.ccqnpse--8n; DUt it will be
instructive to derive Lipkin’s results explicitly by our
method. To do this it will be convenient to rewrite
Egs. (7) in vector notation,

V xE’ = —aH'/at, (112)
V xH’ = oE'/at, (11b)
V-E =0, (11c)
V-H = 0. (11d)

In the usual case we derive a conserved tensor T,
which, when written in component form, expresses
the laws of conservation of energy density and mo-
mentum density. These laws are more readily iden-
tifiable when the components of T',, are expressed
in terms of field quantities. The generalizations of
these equations are easily shown to be

(9/0t){E"-E'" + H'-H"’}

V-{E xH") + E"" xH)} =0, (12)
and
(0/00{(E’ xH") + " xH')},
+ o/ox, {(E"-E” + H'-H") §;;
— (BE+ HH) =0 (13)

In the process of deriving Eq. (12), if we display
components of the fields, we can obtain the result

(0/00){EE] + HIH}')
= {[E(V xH"); — H(V xE");]
+ [EV(V xH'); — H'(VxE) ]}, (14

We obtain two further equations from Eq. (14) by
first replacing E’ and H’' by (V xE’) and (V xH'),



1954

respectively, and second by replacing E' and H” by
(V xE") and (V xH""), respectively. Adding these
two equations together, and using the wave equation,
leads to the conservation law:

(0/0D){(((V xE").E{ + (V xH'),H{']
+ [EXV xE”); + H(V xH"),])) + G < )}
+ (0/0z){[(BH], — HIE)

+ (EYH, — H'E, Q]+ G} =0.  (15)
We now set
B = (V XV b vx)ntimaa E, (168‘)
and
H = (V XV .- Vx)..um.H, (lﬁb)

and, in a similar manner, define E'' and H’’ which
are the same as the single primed quantities except
that an index m replaces n.

* We will now show that Lipkin’s results are partic-
ular cases of the above. For ease in comparison we
use Lipkin’s definition of Z*** [as given by his Egs.
(17)-(22)).

R, F. O’'CONNELL AND D. R. TOMFPKINS

Setting n = 0 and m = 1 in Eq. (12), we obtain
(/00 2°° + (3/01)Z°"* = 0; a7

settingn = 0 and m = 1 in Eq. (13), we obtain
(0/3)2°° + (3/0x)Z°" = 0; (18)

setting n = m = 0 in Eq. (15), and making use of
Eq. (17), we obtain

0/9)Z*"° + (3/9z)Z"* = 0; (19)

Egs. (17)—(19) constitute all of Lipkins conserved
quantities.

In summary, we have shown that generalized
solutions of the usual wave equations are possibly
a more fundamental concept than generalized con-
servation laws and that the latter readily follow
once we have established the existence of the former.

Note Added in Proof. In subsequent publica-
tions''"* we demonstrated the existence of general-
ized conservation laws for free fields with mass, and
examined the physical interpretation of these con-
servation laws.

1 R, F, O’Connell and D. R. Tompkins, Nuovo Cimento
38, 1088 (1963(%.

2 R, F. O’Connell and D. R. Tompkins, Nuovo Cimento
39, 391 (1965).
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. An explicit formula is given for the evaluation of a diagram with one loop and n vertices in m-dimen-
sional Lorentz space (n > m). The result is given as a sum of terms each corresponding to a one-loop
diagram with m vertices and with a coefficient which can be obtained from rules analogous to the

rules of residue calculus.

INTRODUCTION

HE standard method of evaluating the con-

tributions from Feynman diagrams is to in-
troduce the so-called “Feynman auxilary variables.”
For a diagram with a large number of lines this
method gives rise to rather extensive integrations.
In fact, if n > m, we increase the number of in-
tegrations by using this method.

In this paper we study those diagrams consisting
of a single loop with an arbitrary number of vertices.
Such a diagram gives rise to an integral of the
form

F(za, a)
= f [dq/kI’:I1 g —p) + & — if]il @

Zin=—(@;i — D) = @Dio — Po)” — B; — Bu)°.  (2)
Here, the differences of the vectors p;(j = 1, - -« , n)
are the external energy momentum vectors of the
diagram and the a; denote the squares of the masses
of the particles corresponding to the internal lines
of the polygon.

In two-dimensional Lorentz space, Killén and
Toll' have, by explicit integration of (1), obtained
the following reduction formula:

F(zjx, @) = f I:d”q / inIl g — p) + ax — ie]]
= % 2{1/ II:]; g — p)* + ail

i<k
isf,k

+1/ 11 (i - 2 + o)
ird .k
d’q
X f g — ps)* + a; — iell(g — ) + a, — 1€]’
®

where ¢,; are the two vectors which satisfy
! G. Killén and J. Toll, J. Math. Phys. 6, 299 (1965).

(gix — Pi)z +a; =0,
(q;k - pk)z +a =0

@)

The integrals in the sum are characteristic of a
“bubble” diagram with two external lines. In m
dimensions with m > 2 [(m — 1) space- and 1 time-
dimension], an explicit evaluation of (1) becomes
rather complicated. However, Halpern® has given
a reduction formula for a diagram with m -+ 1 lines,
and Brown® has shown how to reduce a diagram
with n lines to a sum of diagrams with # — 1 lines
if n > m + 2. (Here and below “diagram’ means
“one-loop diagram.”) Using their results,:we show
that the following simple generalization of formula
(2) is valid in m dimensions. Let P be a set of m
vectors p, such that the Gram determinants of
their differences are different from zero. It will be
shown that there are exactly two vectors ¢& which
satisfy

(gp — p.)* + a, = 0 (m equations). 6))
For convenience we define
[i(@] = (g — p)" + a). )

Then we have the following reduction formula:
f 4 _1ls {__1___
n . —_ 2 +
[T - 27 (L)

1 d"q .
+QU@$ngw@—m @

The integrals in the sum correspond to m-dimen-
sional diagrams with m lines. We remark that the
diagram with four lines in four dimensions has been
explicitly evaluated by Wu*,

1 . R. Halpern, Phys. Rev. Letters 10, 310 (1963).

3 L. M. Brown, Nuovo Cimento 22, 178 (1961).

+ A. C. Wu, Kgl. Danske Videnskab. Selskab, Mat.—Fys.
Medd. 33, No. 3 (1961).
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I. PROOFFORTHE CASEn=m -+ 1
A. Reduction Procedure

As was mentioned above, Halpern has given a
formula for the reduction of the m-dimensional dia-
gram with m - 1 lines to a sum of diagrams with m
lines. For the convenience of the reader, a summary
of his proof is given here. He uses the representation
of the diagram as an integral over the Feynman
variables. We give the well-known transformation
formula here, to fix our conventions.

/ [qu / EI':I‘ @ —p) + & — ’ie]:| = (= 1)

XI‘(s)ij;l---/:dal---da,.a(l—Ds %) (g

wheres =n — §m,and D = qu 2oy, — Z 0.
The condition D, o; = 1 allows us to write D as a
homogeneous polynomial of second degree in o

D= % Zk Vireio, (9)

Ui =23 — 0 — @y, § Ak Y5 = —2a;.

For the reduction, Halpern® uses a generalized ver-
sion of Stokes’s theorem which, in our case, reads

_/:'“j:dal"'danm— Z ’)Z;aa.

‘_lf f da, -+~ da,

X 81 — 22 a)A;8(s), (10)

where A, are n quantities which are functions of «
and fulfill the condition

EAs:

i=1

(1)

To be able to apply Stokes’s theorem to our problem,
we must find quantities A4, such that

04, _ 1
(a‘) gga—‘.—Ds)

(12)
(b) Z A; =0,

i=1
The construction of these A; proceeds in two steps.
First, quantities A; are defined which fulfil con-
dition (a), and afterwards we derive from these
quantities A; which also satisfy condition (b).

*F. R. Halpern and W. Wilson, “Poles in Feynman

a%;ams with Several Loops” (prepnnt) In Appendix I

s paper there is a proof of Stokes’s theorem as it is
stated here in formula (10).

BENGT PETERSSON

We have the linear relations

Eai = 1)

=1

(13)

6D

E \l’ual =3

i=1 Q;

i=1,2---n (4

As it is obvious that nontrivial solutions «; of Egs.
(13) and (14) exist, the determinant

1 1 ... 1 1
A= ‘p'n 10.12 ‘/’-m 3D(aal (15)
Yin Vou Yan 0D/0a,,

is equal to zero. The determinant A can be expanded
in the form

where P; and ¢ are minors corresponding to the
last column in A. If one defines

A; = P,/ — s)yD*?, an

one gets
e~ 3dA; _ 1 (note that P, and ¢ are as
“9a; D° independent of «). )

However, the sum »_%_, A, is not equal to zero in
general and, therefore, the A; cannot replace the
A; in Eq. (10). A satisfactory choice of A; is

A;—-A Ea,—-a. ZA{ (19)

f=1

Then, we have, trivially,
> A4, =0. (20)

{m]
If we are careful not to put Z a; = 1 before dif-

ferentiation and use the fact that D is homogeneous
in a; to a.pply Euler’s theorem, we get

aA
- D’ + [2s —

P,
&t - 1] (1 — s)‘bDa—-l' (21)

If n = m 4+ 1, we have 2s — n — 1 = 0, so that,
in this case, one gets the result

fol“'fldotl“' *Js(l_ziai

D1+m/2
m+1 2P
= < m'p f dal LY

8e)d(1 — Do )
X D’»/2 i 1‘_

dam+ 1

dam+ 1

22)
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In terms of the original integrals, we get

/ "
m+1

II g — p)° + ax — i€

- 35 [|rda - oy

m+1

H g — p)’ + a — ze]:| (23)

We close this section with a few remarks about the
algebraic structure of P; and ¢. If we subtract the
first column from all other columns and the first row
from all other rows, y can be written in the form

+ a; — i

—2a, zptai—a: -c Ztai—a.
2uta—a —22, * 221221
v="9= 2180 — 05 23— 212213 "¢ Zan—213—Z1n|
2in 0 — 0y 221221, 0" —22,,
(24)
b = dii (24a)

Using the same procedure, we can transform P; to
the form

= (=1 i1, (25)

where J'° is the determinant obtained from ¢ by
suppressing row one and column <,

B. Comparison between the Coefficients in (7) and (23).

Let @ be an arbitrary vector in m-dimensional
Lorentz space and (p12 - - - Pin) & set of vectors such
that their Gram determinant is different from zero,
and let one of them, e.g., p;; be timelike, i.e.,

Gz * -+ Pim) = det (pyi-py;) # 0,
P < 0. (26b)

Because of (26a) the vectors (p,s * * * Pin) are linearly
independent. The vector @ can be expanded as

(26a)

0 — P12 —Pim
Q= __.__1___. QD12 pfz P12 Pim
G(p12 . plm) . . .
Q'plm plZ‘plm pfm
Q D2 Dim
+ Q'?)m p.fz Plz:pm (27)

Q Din PizPim Dl
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We introduce a vector 8 perpendicular to (pyz+ - * Pim).
Because py» is timelike, 8 is necessarily spacelike.
Further, we require

g =1. (27a)

The set (P12 *** Pim, B) spans the whole m-dimen-
sional space. The vector given by the second deter-
minant in (27) is perpendicular t0 (P12 -** Pim).
Thus it is zero or parallel to 8. We write @ as follows:

0 —Piz *** —DPim
G ++- th)Q = Q.?)lz
G(Plz s pm)
Q'plm
=+ [G(QJ Piz " th)G(pm e Pm)]*ﬁ- (28)
Let gp be a vector which satisfies
P pl)2+ a =0)
(m equations) 29

(gr — Pw)’ + @n = 0.

There are exactly two such vectors g5. We define
Qi = q5 — 1. Equations (29) become

Qi +a =0
@Qr + p11)2 +a =0 p, C (Pu s plm)-

We expand Qp by means of formula (28) and, by
virtue of this, we can write our original coefficients
in (7) in terms of determinants. Let p,: be a vector
such that py; € (12 - - * Pim). Consider the expression

(30)

G(Pm oo le)[(QP + Pu‘)z + a.']
_%(Qi + pfa + @) PPzt PritPim
= —9 QP:Pu
GPz *** Pim)
QP'plm
+ [G@Q, p1z -+ pxm)G(plz v pxm)]}ﬂ‘pn . (31)

We can expand py; in the same way as @ and, since
the sign of g8 is not fixed, we choose it so that

[GP1i; P12 *+* P1m)/G(Prs -+ pxm)]}- (32)

Bpu =
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Then we get

G+ Pm){(QF + pu)2 + a]
+ [(@QF + P16)2 + a.}

—%(Q:"i"p’ii'l'ai) D1i*P12 **° Dii*Dim
- —4| @rPu = 2P’
’ G(Pu *tt Pim)
QP 'plm
(33)

We can identify P} with the determinant P; in (25).
We use Eqs. (30) and the definition of z;; (2)

(&) Qg’ = —a,

(b) 2QP'I)11 =zuta—a, pusC (1712 pm),

- BENGT PETERSSON

(c) 2pu'p1,' =2 — % & 2. (34)
If these equalities are substituted into (33), we get

zutai—a; Zu—21—21; 0 Zim— 21 %m

Pl = — 2ieta,—a, —22y * Zam—R12%1m|
! =

Zin 0 —0n Z2m—212—Zim " —22im
= (=DM =P, i¥%1. (35)

With trivial modifications of the proof above we
can deal with the case 7 = 1. To compare the deter-
minant ¢ in (24) with our coefficients, we substitute
Eqgs. (34) in (24) and interchange the 7th row and
column with the second row and column. We then
obtain ¢ as a function of @» and p;;

and, using (39),

Q> —3@QF + 11 + @) Qepra Qe Dim
—3Q> + i + @) Pl PicPua *** Pri*Pim
=y =2 . 36
4 v QP’Plz P1i° D12 ( )
: : GPia -+ * Pim)
Qr Pim P1i*Dim
Next, we use a theorem from the elementary theory As our final result we get
of determinants which provides us with a correspond- . . 1
ence between minors in ¢ and minors in ¥: (@ + ) +a] = Gz - Pim)
i ]
..A_ll ________ fee e X {Pi & 2[G@r, P13 ** Pra)G®1is Pra * -+ Prm)]t}
E E (40)
vo= ! ¢ = poA
| [
| i

With the notation above we have

Ay = A, 37
In our case we take A as
A=VWWIWWH
('p_l)lﬁ (¢_l)22
= 1 2G(P1i, P1s *** Dim) P, .
v P; 2G(QP, Piz me)
(38)

It is easy to see that the quantities in A are the
corresponding minors of (36). Hence we get

4G(Pu, D = pm)G(Qp, Pia - pxm)
— P? = YF(Pi1z *** Pim)
e plm).

(39)
because A’ = G(p12

v )
2 (Q; + Zhs)” + a; @ + Pu)z + a,
1 (Q; + pu)z + a; + @5 "|‘Lu)2 + a;
[@QF + p.2)" + all@ + P12)* + al

Gprs - p1m)2P;
P? — 4G(Qp, Pig * " prm)G(Pm P12

= (=1) % QED.

N NI

b pl-l)

The identification is made for real p; subject to the
conditions (26a) and (26b). As the coefficients are
analytic functions of the external invariants, the
result can be analytically continued from there.

IL. PROOF FOR THE CASE n > m + 2

We use a result given by Brown,® which provides
us with a reduction formula from n to n — L.
Consider the function for the diagram with n lines:
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Fewa) = [ | o/ T wan |

If n > m 4 2, we can always find a set of numbers
b, such that

b =0, (1)
3 b = 0. @2

Then,
z bl = L hGiFa) @)

and this sum is independent of ¢. We use a solution
of (41) and (42) in which

bm+8 = Opyg = 00 = bn '.:'O'

= [—dq
- [t

_Z:‘.ff be [ lilgldg
s [ @@

We use this reductlon formula to prove formula (7)
by induction. Suppose (7) is valid for all diagrams
with # — 1 lines. We have already proved that (7)
isvalidforn — 1 =m + L

f Hk-, = ZP {Hﬁfl[l(qé)l

d"q
" ILer [z(q;)]} / ILeer k()]

{ lilgH)]
ILier [Ug2)]

1
2%
€p
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[i(gR)]
* ier wq;)]}f Moty

If we substitute this in (44), we get

1 "t‘:? i(gr

3
2 ST bl {Hzer [

[é(gr)]
+ ILier [l(q;)]} f erl’ [k(q)] (46)

If we interchange the sums over P and 7 and use the
fact that

F =

2 bl = 20 bligh] = X blign)], @)
we get
_ 1
2 21’: {Htep [l(QP)]

Htep [l(q;»)]} f erp [k(Q’)}
which is the desired result.

Note added in proof. After this article was sub-
mitted, the author obtained a preprint by D. B.
Melrose, “Reduction of Feynman Diagrams,” in
which similar results are proved with the aid of
different techniques.
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An identity is derived which is useful in the discussion of unitary integrals. It is used to discuss single
Regge pole insertions in the Froissart—-Gribov continuation and with the help of perturbation-theory
models a derivation is given of reggeon unitarity conditions. The general form suggested by Gribov,
Pomeranchuk, and Ter-Martirosyan is confirmed. Finally cancellation mechanisms are discussed
and their relation to the mechanism generating Regge poles is emphasized.

1. INTRODUCTION

HE existence of cuts in the Regge plane'”

has considerably complicated the question of
extracting the high-energy behavior of scattering
amplitudes. Gribov, Pomeranchuk, and Ter-Mar-
tirosyan® have endeavoured to determine the form
of the diffraction peak resulting from a superposi-
tion of the leading singularities generated by a
Pomeranchuk pole. An important element in their
analysis is the expression for the discontinuity around
a Regge cut for which they propose an appealing
unitarity-like form which they derive from a heu-
ristic discussion of unitarity in the s-channel. Some
of the details of their proposal are found not to be
confirmed by a perturbation theory model discussed
by Swift.’

The purpose of this paper is to explore the dis-
continuity formula for Regge cuts from a different
point of view. The method is essentially an extension
of that given in I and is based upon the Froissart—
Gribov definition of the Regge amplitude

-21 © ’ t,
0,0 = [ et + )

X [Ads, 1) = As, 8)], )

where k is the center-of-mass momentum associated
with s, and A,, A, are the discontinuities across
the t and u normal thresholds respectively. These
discontinuities are themselves, by generalized uni-
tarity, bilinear expressions in terms of scattering
amplitudes. Thus the possibility of an iterative

4
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scheme exists similar to that which generates Landau
singularities”'®: an assumption about the high-energy
behavior of amplitudes will lead to a high-energy
behavior of A, and A, which will then give sin-
gularities in ! in (1). However, since it is the high
t behavior of A, and A, which is in question,
the relevant expressions will contain contributions
from intermediate states with all possible numbers
of particles. Thus a knowledge of the high-energy
properties of production—process amplitudes is neces-
sary to start the iteration. Nothing useful is known
rigorously about this problem but perturbation-
theory models have illustrated the type of behavior
which may be expected.’ In this paper, therefore,
we shall use a blend of rigorous methods together
with ansatz suggested by perturbation theory. Only
single Regge poles will be considered. Multiple
poles, which are a feature of production amplitudes,
will be dealt with in a second paper.

In Sec. 2, we derive a useful identity. It is used
in See. 3 to evaluate the effect of certain Regge
pole insertions. The resulting cuts and their dis-
continuities are evaluated in Sec. 4. In Sec. 5 the
vitally important case of insertions associated with
crossed lines is considered. Part of the integration
is evaluated using the identity. The remainder is
evaluated by a device which uses perturbation
theory as a means for evaluating unitary integrals.
In Sec. 6 it is emphasized that the cancellations
occurring when many insertion terms are summed
depend for their possibility on a mechanism which
generates Regge poles in such a manner as to as-
sociate them with negative integers in the weak
coupling limit. Finally in Sec. 7 it is shown that
the sum over all single pole insertions produces
a cut whose discontinuity is of the Gribov, Pom-
eranchuk, and Ter-Martirosyan type.

(19;5'). C. Polkinghorne, Nuovo Cimento 23, 360; 25, 901
s H. P. Stapp, Phys. Rev. 125, 2139 (1962).
? I. G. Halliday and J. C. Polkinghorne, Phys. Rev. 132,
?1536 5()1963); J. Cy Polkinghorne, Nuovo Cimento 36, 857
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REGGEON UNITARY CONDITIONS. I

2. A USEFUL IDENTITY»
We consider

1 QY dt
eI MR vvow = sy 1

The function A™? is the Jacobian for the transforma-
tion from an integral over the loop momentum to
an integral over invariants'* for the loop of Fig. 1.
It is given by

A = det (p:py), 3
where p; (¢ = 1, :-+ 4) are the momenta in the
four lines of the loop.

We take I as integral and later use Carlson’s
theorem to extend the result to nonintegral I. Then
(2) may be rewritten, using the inverse of the
Froissart—Gribov procedure, as

1 m [ 2i f dt; dt}
I= 2 f.l Pie) dz —47° J [AG, t; m?, 8], t)]}
1

1
s o

where z = 1 4 t/2k* and F, the function in the
square brackets, is constructed to have a spectral
function associated with its f-cut which is just
A~Y, Now the integral in F is (to within a factor
of 7, since A < 0 in the physical region) just an
s-channel phase-space integral so that (4) may be
rewritten as
R
2 + mHP\2 S, 26° 4 — ¢,
l i d__tz'_ P 1(252 )
X (2 f_, WL -5 O

giving as our final identity
11 1
T 2K xt 4k(K + m®)

X Q1 + t./2kQ.(1 + t2/2k2)- (6)
We now deduce from Carlson’s theorem that
the identity (6) which we have proved for integral !

is also true for nonintegral I.
It is possible to derive similar identities by the

X

I

m m
Y

t2]m ™ Fic. 1. The loop associated with A.
k]
7

m m

10 Formulas similar to this have also been given by V. N.
Gribov, Zh. Eksperim. i Teor. Fiz. 41, 1962 (1961) {English
transl.: Soviet Phys.—JETP 14, 1395 (1962)]; R. Omnes,
Nuovo Cimento 25, 806 (1962).

11T, T. Drummond, Nuovo Cimento 29, 720 (1963).
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same method which apply when not all the masses
are taken equal to m as are indicated in Fig. 1.

3. REGGE POLES IN UNITARY INTEGRALS

The identity (6) provides a simple means of
evaluating the effect of Regge pole contributions
in the unitary integrals appearing in A, and A..
We can consider the term diagrammatically rep-
resented in Fig. 2. It corresponds to a term in the

Fia. 2. A possible
Regge pole insertion
in A‘.

unitary sum for A, with the internal solid lines
representing particles on the mass shell. The two
wavy lines represent Regge poles with trajectories
a(s;), a(s,) inserted in the two scattering amplitudes
of the unitary integral. The asymptotic variable
of the Regge pole is t,, the invariant associated
with the sum of the momenta in the two sets of
lines in the figure which carry #{, and ¢}, respectively.

It is convenient when considering the unitary
integral to represent it in terms of integrals over
invariants''. The dual diagram, or momentum di-
agram, of Fig. 2 is given in Fig. 3. Sets of lines
carrying momenta in which we are interested are

Fi@. 3. The dual diagram of Fig. 2.
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represented by a single line, corresponding to the
-sum of the momenta of the set. It is clear that Fig,.
3 can be constructed by constructing the successive

at] di; dty’ dty’ ditl, ditl] ds, dsz ds{ dsj ds{’ dsj’

C. POLKINGHORNE

SimpleXeS A B C D 01, A Ol C D 02, A. Ol C 02
Os. This means that the unitary integral contains
the integrations

@

f [A(s,

where A is defined by (3) for each of the three loops
corresponding to the three simplexes. There are
also additional integrations over further subinvar-
iants within the sets of lines making up the invariants
i, 1, t, 1), respectively. We do not need to consider
- these exphcltly. Neither, since we are interested
only in the structure, do we need to keep a precise
tally of numerical factors in the manipulations
that follow and these factors will in fact be omitted.

We regard the identity (6) as evaluating the
Regge transform of F. Then using the Mandelstam
form' of the Sommerfeld~Watson transform we
may write

al 2l + 1)Q:(t)Qu(t)Q-1-4(t) |

M(s, 8, 8,) cos wl

where the succinet notation @, (,) has been adopted,
the factor \! with
A=¢ 4+ 48— 9)
'is the correct generalization'' of the kinematic
“factor 4k(k* + m®)! in (6) to the unequal mass case,
and we have omitted writing down explicitly the
terms which cancel the poles of sec #l since they are
not relevant to our discussion. The contour C runs
parallel to the imaginary axis to the right of I = —1,
We are not, however, interested in F but in
A~} its spectral function across the t-cut. From
(9) this must be representable in the form

-1 o [ dl 21 + I)Q (20Q:(t:)Q—,-1(¢) sin 7"l

N(s, sy, 85) cos 7l

F~

288, — 288, — 28,8,

(10)

As a check on the consistency of the discussion
we may note that the poles of the @ functions at
l = —1 produce for the leading asymptotic be-
havior of (10)

~TNHs; 81, 8), (11)

which is easily seen to be correct by comparison
with the explicit form of A7,

We now introduce into the unitary integral (6)
representations of the form of (10) for the three

} functions involved, labeling the integration
parameters as [, I, l;, respectively. The integrand
will also contain the Regge pole terms correspond-
ing to Fig. 2 whose leading behaviors will be

12 8§, Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).

tr t;,; t;;; 8:7 sg)]![A(s: t127 t12: tz ’ sl s 82 )]![A(S, t12) tl; t2: 81, 32)]* ’

5“8, 87, 1B, 8, 1),

Bz B(ss, 4, 1)B(ss, U, ).

The whole expression is now substituted into
the Froissart—Gribov definition for a(l, s) and the
ti, t{4, t{, integrations performed since the supposed
dependence of the integrand on these variables is

now explicitly exhibited. The result for the leading
behavior is

f ds! ds} ds}’ dsi’ ds, ds, dtl dt; dt]’ dt)’ dt
>\i(3 31: 82))\*(3 s ’ 8t ))\i(s; 81, 82) !

[ an l‘(—l_’li)sin L,

(12)

[ teBnng.w),  ay
[ an = e sin 00000,

Blsy, t’, 1)B(sy, 13, t)B(ss, B’, )B(sa, 1, 1),

where f,, f;, f; are known functions arising from
the ¢, {5 and ¢/, integrations, respectively. Their
properties which are relevant for our discussion
are that f, hasapoleat! = —1,f,apoleatl, = —1,
and f; a pole at [ = —1. The collective symbol
£ stands for the integrals over all the subinvariants
not explicitly shown.

The leading singularity in I of (13) is to be ob-
tained by moving all the contours as far as possible
to the left. The limits to these distortions will arise
from the explicit denominators in (13), from the
poles of f,, f;, f» mentioned above, and from the
singularities in [,, 1, l; arising from the ¢/, #}, #, #
integrations. In order to evaluate this last effect
it is necessary to know something of the properties
of the #’s. For this we turn to perturbation theory
models.

4. THE CUT CONTRIBUTIONS

The terms in which we are interested will be a
sum of expressions of type (13) taken over the
different numbers of lines which can oceur in the
sets of momenta whose sums give #/’, #§, #/, #. Such
a term will contain within it an expresswn of the
form
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S [ ai d5Qu e, 47, 086, 1, 1), (1)
where [ di! is taken on the subinvariants of the
set of momenta whose sum is ¢{ and the summation
is taken over the number of momenta in the set.
A form like (14) looks very much like a generalized
Froissart-Gribov definition for the continuation of
‘an amplitude whose dependence on # has been
replaced by a partial wave projection, and one
might therefore expect that it would give singu-
larities in I; corresponding to Regge poles, etc.

That this is not the case can be seen by the study
of some simple perturbation theory models. ¥Figure
4 illustrates a simple diagram corresponding to the
type of contribution we are considering. The lines
carrying £/’ and t}’ are joined to the remainder of
the diagram by single lines since otherwise their
momenta would be coupled to those appearing in
t and ¢, and so would be associated with the Regge
pole’. This structure ensures that no Regge pole
appears in the ¢ or #}} integration.

The combination of two poles of this type in a
unitary integral gives a #{ factor to insert in (14)
of the type shown in Fig. 5. Increasing the number
of lines carrying the ] variable will not produce
in Fig. 5 the iteration which is necessary to produce
Regge poles, etc. In the terminology of the high-
energy behavior of perturbation theory the num-
ber of minimal d-lines in Fig. 5 is not increased by
increasing the number of lines carrying t{. This
feature illustrated by Figs. 4 and 5 is perfectly
general. The sets of lines carrying #] and # must
always be joined to subdiagrams corresponding to
B-functions and so in the unitary integral appear
sandwiched between these subdiagrams in a non-
iterative way. Therefore, as far as the variable I;
is concerned, the leading singularity is given simply
by the poles of the @, functions in (13). When
account is taken of the factor sin wl, this just gives
a simple pole at [; = —1.

The leading singularity may now be extracted

TET IR
| ] I

"

e

Fie. 4. A typlcal diagram contributing a Regge pole of the
: type considered.

from (13). The poles give I = I, = L, ls = —1
-go that the singularity is
ds, ds, FUF® 15)

N(s, 81, 8) 1 —als) —als) + 17
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Fra. 5. The 8 product in ¢, correspondmg to
two diagrams like Fig. 4

! ’
where

F = §,(, DA, —1) sin «l

f ds] dst dt] dg] dEl’ dty’
N, 81, 52)

X QutNB(sy, 8, B, 7, 1),  (16)
and F{¥ is similarly defined with #’ replaced by
4

Singularities in I of the functions F™ and F®
will arise from the t{’ and ¢’ integrations, respec-
tively. The restrictions on the possible singularities
which applied to the similar integrations over
and # are no longer operative as Fig. 4 illustrates.
Thus the functions Fi®, F{® may be expected to
possess the complete range of Regge poles, Regge
cuts and essential singularities.

The form (15) is similar to the expression proposed
by Gibov, Pomeranchuk, and Ter-Martirosyan®. It
differs from theirs only in the fact that they state
that F* and F*® should be evaluated on opposite
sides of the l-cut. When account is taken of the
fact that F™ and F'® themselves contain the cut
singularity so that their discontinuities must also
be added in, it is easy to see that the resulting
sum of discontinuities then reduces to their pre-
scri;z;;ion for the complete discontinuity around the
cut.

So far however, we have only discussed the com-
bination of Regge poles which both correspond to
the same asymptotic variable #{,. In fact however
the contributions from all such diagrams of this
type must cancel among themselves for they cor-
respond to diagrams which in perturbation theory
will not have the necessary pinch contributions
present for positive Feynman parameters.* Thus
if (15) is to have more than purely formal interest
it must be extended to a more general case. This
is done in the next section.

5. CROSSED LINE INSERTIONS

‘We consider now insertions of the type illustrated
by Fig. 6. Again the particular connection of the
lines carrying #’ and #’ to the remainder of the
diagram is dictated by the requirement that the
Regge poles manifest themselves only in the com-

s Cf. normal threshold discontinuities evaluated in per-
turbation theoxy Symbolically the structure is A = FF +
FFF + ... = F(F +FF 4 ...) = F(F + A).
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F1a. 6. A typical crossed line insertion.

plex of integrations corresponding to the variables
carrying {f,. A particularly simple crossed line struc-
ture has been drawn in Fig. 6 for illustrative pur-
poses, but it will become clear that our methods
can be applied to the general case.

The first steps in the analysis of Fig. 6 are as
before. The unitary integrals are represented by
integrals over momenta and the identity (6) is
used. The integrals over ¢ and #} can be performed,
and we are left with an expression of the structure

ds! ds2 ds}’ dsf’ dE
)\%(3 31: 32)7\5(8 s s 32) ’

[ ar, b1 ‘) sinxly [ dQu (),

ar)
[ an Bt 12) sinrly [ 440,

f dt{zQ(tfz) ’ AlAzy

where A,A, stands for the product of the two
amplitudes combined in the unitary integral. The
method becomes unusable however when the i,
integration has to be considered. The invariants
of interest can no longer be represented in dual
diagrams which can be constructed out of successive
simplexes,

Instead of attempting directly to unravel the
resulting kinematic complexities, we use Feynman
integrals as a device for the evaluation of unitary
integrals. The subintegrations of the #{, complex in
Fig. 6 may be related to the discontinuity of an
integral associated with Fig. 7 across the #, cut
in which the four crossed lines carrying ¢, --- ¢,
are put on the mass shell. This integral is not yet
in simple Feynman form for instead of the usual
propagator we must associate with line 1 a term
which we represent in the form

(q: +.Q3)2a("
= fdsl((h + 9’3)2&(")5(31 ~ s’

-~ 1 -~
U a3
B
9 2 %
- AN
[ 4

(243

(18)

.Fra. 7. The perturbation
diagram sassociated with the t;,/
integration in Fig. 6
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The invariant s{’’ is the squared momentum as-
sociated with line 1, and the reason for choosing
the oblique expression (18) will become apparent.
A similar factor is associated with the line 2. We
now interpret the s-functions in these two factors
as arising from taking the discontinuity of Fig. 7
across the normal threshold in s at (s; + s.)%, where
s; and s, are treated as being the internal masses
associated with the lines 1 and 2. The integrations
over s; and s, will be performed after all the other
integrations associated with the diagram. These
latter integrations we shall call the diagram integral.

We shall evaluate the asymptotic form of the
discontinuity across s = (s, -+ s;)° by taking the
discontinuity of the asymptotic form of the diagram
integral. The diagram integral is now in Feynman
form with a propagator

2a (2}
(g, j" 23) (19)
§ &

for the line 1, and a similar expression for 2. The
object of our manipulation has been to get an
integral in which s;, and hence the exponent af(s,),
is effectively constant since standard symmetric
integration methods can then be applied. In evaluat-
ing the asymptotic form, the effect of the numerator
in (19) must be taken into account using methods
developed for the discussion of Feynman integrals
with spin.'* The numerators will provide factors
proportional to £*“* and ¢*“* and the pinch* be-
tween the two crosses will give 7>, This is for the
diagram integral itself. It is now necessary to take
two discontinuities. The first is across the #{, cut.
The integrals corresponding to the function on
either side of this cut differ by having different
contours for the Feynman parameters. The dif-
ference between the two contours will also contain
the pinch so that the ¢~ behavior is retained. Thus
the asymptotic form of this discontinuity is found
to be

f ds”’ ds/rl 2(8, S{N, sé”)

NG, 817, 7) (877 — a8 — )
X (t{2)a(a;)+a(s.)-—1. (20)

The functions f are calculable from a knowledge of
the difference of the two contours referred to, but
we do not need them explicitly here. The final
discontinuity to be taken is across the normal
threshold s = (s, -+ s.)°. This gives

(s, 81, 85) @D

(19:;.1 C. Polkinghorne, J. Math. Phys. (N, Y.) 5, 1491

( ’ )a(ax)+a(n)—l
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Finally, when the s, and s, integrations are per-
formed, (21) gives a contribution which when inserted
into the #{, integration gives an [, singularity

f* ds, ds, 1 _
N(s, 81, 8) I — als;) — als:) + 1

The combination of (17) and (22) will then give
an | cut which can be written in the form (15),
with f’s incorporated into the definitions of F{*’ and
FP®,

Although we have discussed the particular case
illustrated by Fig. 6, it is possible to replace the
crosses by any diagrams with third spectral fune-
tions since all such pairs of diagrams give the
typical pinch contribution resulting in a ™' as-
ymptotic behavior in the spinless case.

The method may also be applied to the evaluation
of contributions associated with Regge poles in
different asymptotic variables but without crossed
lines. There is no pinch on the physical side of the
t1~cut, but on the lower side the a-contours cor-
responding to the lines put on the mass shell are
distorted back to negative values and a pinch con-
tribution becomes possible (cf. Sec. 3 of Ref. 4).
Therefore a pinch generated ¢~ factor will be ob-
tained for the discontinuity. Of course the sum of
all contributions of this particular type must give
no cut because they correspond to planar diagrams.®**

(22)

6. COMPARISON OF DIFFERENT INSERTIONS

We know that the diagram of Fig. 8 does not
have a cut®'’. It corresponds to many different
insertions of the type considered above and the
sum of their cut contributions must just give zero.
In this section we wish to emphasise an important
property which makes this possible. By doing so
we are essentially amplifying a remark made at
the end of Ref. 15.

The contributions from the two-particle and three-
particle intermediate states illustrated in Fig. 8
are two of the possible insertions. These must partly
cancel to help give the cut-free result quoted above.
At first sight this does not seem possible since the
ladder generating the pole in the three-particle

........... - 3

Fra. 8 A diagram not
giving a cut.

o - 2

15]. C. Polkinghorne, Phys. Letters 4, 24 (1963).
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intermediate state has one less rung than that
occurring in the two particle state and so the
two contributions appear to be of different orders
in the coupling constant and thus incapable of any
general cancellation. However, the ladder for the
three-particle state is associated with a subintegra-
tion over a variable, ¢ say. If the ladder has n-
rungs its leading behaviour will be #~'(In ¢)*7%,
and its contribution to the unitary integral will
appear in the form

’ ’ 7=1 nn-1 " 1____.._
[avew) ey ~ g @)
The appearance of (n -+ 1) rather than n as the
exponent on the right-hand side of (23) is due to
pole of Q; at I = —1. This has the effect of making
the ladder of n-rungs associated with ¢’ equivalent
to a ladder of {n -+ 1) rungs associated with &
Thus the two-particle and three-particle states give
contributions of the same order, and this is easily
generalized to the n-particle states, so that cancella-
tion is possible. From this discussion we see that
the possibility of cancellation is intimately con-
nected with the existence of Regge poles generated
in a way which associates them with the negative
integers at which the @, functions have poles. The
cancellation would not be expected to occur for
any other sort of Regge pole, if such could exist,

7. CONCLUSION

We have shown that each Regge pole insertion
leads to a cut whose discontinuity is given by (15).
The functions F{ and F{® are defined by integra-
tions over the variables i’ and #‘. In summing over
all the possible insertions, we must sum over all
the possible structures which can be inserted into
their subintegrations. In order to uncouple the
momenta in ¥/ and )’ from the Regge poles we
noted that these structures are joined to the tf,
part of the diagram by pairs of lines so that the
form is that illustrated by Fig. 9. A sum over all
these possible insertions will give a discontinuity
of the form (15) also. Thus the form suggested by
Gribov, Pomeranchuk and Ter-Martirosyan® is con-
firmed by this analysis.

However the detailed properties of the functions
F® and F{® cannot be determined without taking

Fra. 9. The insertion
. . structure corresponding to
the Regge poles considered.
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into account the effect of cancellations when these
sums are taken. In fact the example discussed by
Swift® shows that these properties differ from those
which one might simply expect.

The question of cuts generated by multiple pole
insertions will be taken up in a subsequent paper.

J. C. POLKINGHORNE
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A theoretical study has been made of the behavior of the critical Stérmer pass points for general
axially symmetric magnetic configurations. A topological method has been derived to predict the
occurrence of the critical Stérmer conditions for charged-particle exclusion. This analytic technique,
when applied to geomagnetically interesting fields, should be a useful aid to the understanding of ex-
perimental data. The method is applied here to three magnetic geometries: double ring currents with
parallel dipole moments and with antiparallel dipole moments, and the axial magnetic quadrupole.
The topology of the regions representing allowed motion is treated systematically and the behavior
of the critical pass points is illustrated in typical Stormer plots. For the quadrupole and the anti-
parallel ring system critical pass points are found to occur only out of the equatorial plane. For the
parallel ring system, critical points can occur in or out of the equatorial plane. For certain special
conditions as many as three simultaneous critical pass points are found, and two simultaneous points

occur for a wide range of parameters,

INTRODUCTION

EVERAL extensions of the Stérmer problem’

of allowed motion of unbound, charged particles
have been made in connection with cosmic ray
effects and the shielding of current systems. Trei-
man’® and Ray,’® following suggestions of Chapman
and Ferraro,* treated the combination of a mag-
netic dipole and a ring current. Others (Akasofu
and Cain,” Akasofu and Chapman,® Akasofu and
Lin,” Kellogg and Winckler,®) have further con-
sidered this problem. Levy’ and a group at the

1 C, Stormer, The Polar Aurora (Clarendon Press, Oxford,
England, 1955).
18, B. Treiman, J. Geophys. Res. 89, 130 (1953).
3 E. C. Ray, Phys. Rev. 101, 1142 (1956).
48, Chapman and V. Ferraro, Terr. Mag. Atmos. Elec.,
38, 79 (1933); 45, 245 (1940). :
5 8. 1. Akasofu and J. C. Cain, J. Geophys. Res. 67, 4078
1962).
( 6 S. I. Akasofu and 8. J. Chapman, J. Geophys. Res. 66,
1321 (1961).
78. I. Akasofu and W. C. Lin, J. Geophys. Res. 68, 973
1963).
¢ 8 P, J. Kellogg and J. R. Winckler, J. Geophys. Res. 66,
3991 (1961).
* R. H. Levy, Avco-Everett Research Laboratory Research
Report 106 (1961).

Lockheed Research Laboratories'® considered the
applications of Stormer’s criteria to a single-turn
current loop and, also in connection with space
shielding, Tooper'' has studied the Stormer problem
of a right, circular solenoid.

The present work, a treatment of the Stérmer
problem of three simple axially symmetric magnetic
systems, reveals some remarkable properties of the
Stormer forbidden regions, which could have
application to cosmic-ray and trapped-radiation
studies. The systems are not considered in combina-
tion with a dipole field, and the results, therefore,
cannot be directly compared with geophysical data.
However, the behavior of the Stérmer regions is
sufficiently complex that this intermediate step is
valuable for a reasonably simple interpretation of
later studies of the possible geomagnetic effects.
Two of the three field geometries considered here
are those due to two parallel, coaxial current loops
with currents in the same sense (parallel dipole

10 G, F. Kooi, Lockheed Technical Report 8-94-64-2 (1964).
u R, F. Tooper, ASD-TDR-63-194 (1963).
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into account the effect of cancellations when these
sums are taken. In fact the example discussed by
Swift® shows that these properties differ from those
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moments) and in the opposite sense (antiparallel
dipole moments). The third field configuration is
the axially symmetric magnetic quadrupole which
represents the limiting case for the antiparallel cur-
rent loop system when, for constant loop dipole
morment, system dimensions become infinitesimally
small,

The parallel loop case, could represent two
ring currents in the northern and southern hemi-
spheres, respectively, or, equivalently and possibly
more significantly, a system of counterflowing and
somewhat separated electron and proton ring cur-
rents near the equatorial plane. The antiparallel
case is included for comparison.

STORMER PROBLEM

A brief review of the general Stérmer problem and
its application to the dipole case is in order. We
proceed as usual from either the Lorentz force equa-
tion or the Hamiltonian representation for a charged
particle of relativistic mass m, and charge e, moving
in an axially symmetric magnetic field. The field is
defined by a vector potential A = A,é, where ¢ is
the azimuth angle about the axis of symmetry. The
coordinate system is shown in Fig. 1.

The nonrelativistic Hamiltonian is given by

1
= (p — ¢A)’
2m ) (1)
1 A ) }
~ om ['p, Tt (r sin 4 eds) |

The relativistic form leads to the same equations of
motion if no particle energy losses occur. Applying
Hamilton’s canonical equations of motion, we obtain

? CHARGED
‘3 PARTICLE

£y

)

West

\ y

«4-—— MERIDIAN
¢ PLANE
\.1’3

E4]

Fia. 1. Spherical coordinate system.
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P = mf,
Po = mr’o:
Py = mr” sin’ 0«;5 + ersin 4,, @
- __2_ P _ )(_EL GA)
Dr + sin ¢ 4, 7 gin 0+e
. _1{( p, )(p_éccse aA)
p‘_m(rsine ed, r sin® 9+ ﬁ
Ii¢=0»

The last member of this equation states that the
component of angular momentum about the sym-
metry (z) axis is conserved. Rewriting the third
member of (2) in terms of this constant of the mo-
tion, P,, which we define to be —2yp, we obtain

mrsin 8¢ = —2yp/rsin § — ed,. 3)

A second constant of the motion is the energy or
speed of the particle as evidenced by the fact that

H = 0, )

which implies that H = E = constant. The ¢
component of the particle’s velocity is r sin 6¢; the
angle » between west and the velocity vector is,
therefore, given by

CosSw = —v,/v = —rsin /v = Q 5)

The velocity vector lies on a cone of directions, the
so-called Stormer cone, with vertex at the observer
and axis along the east-west direction. It is ap-
parent that, for real motion,

i@l < 1. ®)

We now introduce a normalizing unit of length,
C,;, the Stérmer distance, which is the radius of
the trapped, circular orbit of a particle of charge
e and momentum p in the equatorial plane of a
dipole of moment M. It is given by

Cl = poeM/4mp. )

With this parameter we define dimensionless quanti-
ties

[cos | =

p = T/CIH
\ =
d/cl.g, (8)
¥ = 'Y/Cch
= (ea®/pC3.)A,.

Substitution of (5), (7), and (8) into (3) leads finally
to

Q = (27/psin ) + (4,/X). @
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MAGNETIC DIPOLE

Application of (9) to the dipole shielding problem
has been discussed in considerable detail else-
where.''*'****® If the vector potential for the dipole
is normalized by means of the previously defined
parameters,

A, = N(sin 0/p%). (10
Upon substitution into (9), we have
Q = 2y/psin 6 -+ sin 6/p°. 08))

The free parameter remaining in the equation is
¥, the normalized impact parameter. Plots of this
equation are then made in p and 8 for @ = 1 and
for various values of 4. These plots represent merid-
ian-plane cross sections of the space around the
dipole and are of course independent of azimuth
angle, ¢. By the symmetry of the dipole field and the
form of (11), the plots are symmetric under reflec-
tion in the equatorial plane. A typical set of these
well known plots is shown in Fig. 2. The so-called
forbidden regions in which |@| > 1 and into which,

EUGENE W. URBAN

therefore, particles cannot move are cross-hatched.
Regions in which particles are allowed are unshaded.
For 0 > ¥ > —1.00, a single allowed region connects
the origin with infinity. When ¥ = —1.00 the bound-
ary @ = —1 just reaches the equatorial plane, and
for all ¥ < —1.00 there exists an inner allowed re-
gion which is separated from the outer allowed region
by an arm of the outer forbidden region. In theory,
each point of the allowed region is accessible to
particles arriving from infinity. However, particles
cannot cross the forbidden region and, consequently,
unbound particles cannot penetrate into the inner
allowed region. Likewise, particles which somehow
find themselves in the inner allowed region are, in
the ideal case, permanently trapped there. The actual
trajectory of a particular particle can be determined
only by numerical integration of the complete set
of equations of motion, (2), but we are assured that
whatever the particle’s initial conditions, ¥, €, m, E,
the trajectory, however complicated, will remain
in the outer allowed region defined by that ¥.

As ¥ increases monotonically from large negative

Q=-|

y=-10

=¥e

1
1.0 P

Q=-|
\ $2-0.50
= y=-0.97 Q=1

wh 1 Y 1 1 |

o] 1.0 P 0 1.0 P
=
Q=1 Q= |

7 =0.03 ¥=0.0

0 1.0 P (4] 1.0 P

Unit of length is Cg;

Fia. 2. Forbidden regions for the magnetic dipole.

12 M. 8. Vallarta, Handbuch der Physik, edited by 8. Flugge (Springer—Verlag, Berlin, 1961), Vol. XLVI, pp. 88-129.

3 T, H. Johnson, Rev. Mod. Phys. 10, 193 (1938).
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values through —1.00, then zero, to large positive
values, the boundary @ = 1 of the inner forbidden
region expands monotonically. We can, therefore,
conclude that the critical condition, ¥ = —1.00,
specifies the largest inner allowed region totally
forbidden to particles from infinity. In other words,
the particular inner forbidden region, outlined by
the curve @ = 1 which occurs at ¥+ = —1.00, lies
entirely within all inner forbidden regions for ¥ >
—1.0 (outer forbidden region open). Upon sub-
stitution of @ = 1, and ¥ = —1.00, Eq. (11) gives
the boundary in p and 8 of the totally shielded region.
The minimum energy of a particle reaching a (r, 6)
in space [or (r,, 8) on the surface of the earth] can
then be found from (7). Alternatively, similar sub-
stitution of @ = 0 would define minimum energy
for vertical incidence.

GEOGRAPHICAL ANALOG OF THE Q SURFACE

It is of interest to examine in general the nature
of the critical point which defines the condition of
maximum exclusion of unbound particles. Stérmer'
pointed out that the ¢ = constant curves can be
looked upon as equipotential or contour lines in a
geographical analog. If we define a new parameter,

Q@ =@ =[27/psin 6 + A,/NT,  (12)
we can easily show from (2) that
19 :
Foe = 6~ o)
g (13)
1 9Q

= — S (o8 + 260).

If we now assume that 1 is some scalar potential
function, the force experienced by an entity upon
which the potential field acts is given by

F = —V(E&Q),

and we can write

F, = —0/3p3Q) = n(p — 06,

19 ~ . .
Fy = ——pﬁ(%Q) = n(pf + 2546).

(14)

(15)

A comparison of (13) and (15) leads to the con-
clusion that we can treat the motion of a charged
particle in the meridian plane as the motion of

a pseudo particle with “mass” n = C?,/v® in a
“gravitational”’ potential field
V= %Q’ (16)

whose equipotential or contour lines are given by
curves of constant ¢ or, therefore, by curves of

1969

constant @. The force on the pseudo particle in this
“landscape’ is perpendicular to the equipotentials
and is directed toward the curve @ = 0; the pseudo
particle cannot move into a region in which § > 1
or |@| > 1. The projection on the @ = 0 plane of
the path of a pseudo particle in this geographical
analog will be the projection in the meridian plane
of the trajectory of a real particle with equivalent
initial conditions.

SADDLE-POINT CONDITION

Stormer employed this analog for intuitive in-
terpretation of the trajectories he calculated, but
in the case of magnetic geometries more complex
than a pure dipole, another important use exists.
From Fig. 3, a plot of @ = constant for 4 = —1.00,
it appears that the so-called ‘“pass point,” by way
of which an unbound particle approaches the vicin-
ity of the dipole when ¥ > —1.00, is of the form of
a saddle point in the @ surface. If this is so, then
the critical pass or saddle point at 5, = —1.00,
defining first exclusion of unbound particles from
the inner allowed region, should be derivable from
the mathematical conditions for a saddle point and
the fact that @ = —1 there.

A saddle point is defined for some function F(p, 8)
by the following conditions:

oF/3p = 0,
(1/p)(0F/86) = 0,
1 &'F ] [ﬂ][i a_z]
[p ap 80 apz pz EYH > 0.
Applying (17) to (11) we obtain

104,
N dp

an

(18)

27,
—ale 4 =0
p. sin 6, p=se ’

19}

_ 2,008 0 | 194,
posin® 8, ' N 98

(20)
om0

[}

F1a. 3. Contour map of curves; @ = constant fory = —1.00,
dipole.
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The condition that @ = —1 gives a third equation,
27, 1| __
sin O, + X A, s 1. (21)

G=fo

We now have three simultaneous equations which
may, in principle, be solved in closed form to give
po, 8., and 7,. The final test is, then, that the in-
equality (18) is also satisfied.

Applying (19)-(21) to the dipole, the well known
critical saddle point values are obtained:

¥, = —1.00, p. = 1.00,

the inequality is of course satisfied by these values.
The dipole is an almost trivial application of the
saddle point condition. Thé simple symmetry of
the vector potential ensures that 4Q/390 = 0 every-
where on the equatorial plane. The same is true for
the somewhat more complex cases of the single cur-
rent ring’ and the dipole plus ring current.® The
obvious approach is to assume that 6, = 37 and to
solve (19) and (21) for p, and ¥,. Previous treatments
have employed just this approach, but without
noting the existence of a saddle point. However,
there are more complex magnetic geometries which
possess critical points for @ = —1 out of the equa-
torial plane, and which may also have interesting
saddle points on the @ = 1 boundary. For these
cases all three equations (19)-(21) and the inequality
must be used.

VECTOR POTENTIAL OF SINGLE AND
- DOUBLE RING CURRENTS

Consider a circular ring of current of infinitesimal
cross section, oriented parallel to the equatorial
plane, with radius a, and center at a distance b
from the origin along the axis of symmetry, and
carrying a current I. The vector potential of this
ring at a point (r, 6) is given by

A = wolat KC(k)
¢ 2r (rsin 6)*’

22)

- 1.
0, = im;

23)

where

B = 4arsin ¢
" (rsin 0 4 a)* 4+ (r cos § — b)*’

Ck) = 1/K'(2 — K)K (k) — 2E(R)],

and K, E, and C are complete elliptic integrals.'*
The vector potential of a combination of two such
loops, located at -+b and —b on the axis of sym-
metry, is given by

¥ E, Jahnke and F. Emde, Tables of Functions (Dover
Publications, Inc., New York, 1945).
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A4, = 2—1@?15'5‘ [[a3K3C (k) + LalkiC.(ks)], (24)

the upper sign corresponding to currents of the same
sense (parallel) the lower sign to currents of the
opposite sense (antiparallel). Also,

2 _ 4a, ,rsin
Y27 (rsin 0 + a,,,)° + (r cos 6 F b)*’

(25)

the subscript 1 and the upper sign referring in both
parallel and antiparallel cases to the upper loop, and
the subseript 2 and the lower sign to the lower
loop. If @, = a, = a and I, = I, = I, and if we

define a new dimensionless parameter 4 = b/C,,,
we obtain
=1 N o sy
® = (p sin 0)* 1L 22l (26)
2 4)\[) Sin 0

Y27 (psin 6 + N)° + (p cos 8 F q)°

This will reduce, respectively, to a single loop carry-
ing current I, or to no current at all, when = 0.

AXIAL QUADRUPOLE

If we take the limit as p >> X of the vector-potential
expression for a single loop, (23), by means of the
series approximation for C as given by Jahnke and
Emde,* we obtain (10) as should be expected.
Similarly if we take the limit as p >> A and p > 9
in (26), the upper sign leads again to (10), while the
lower sign leads to

- 3\’ sin 26
A¢ = 1]2‘)3 ’

(27)
the dimensionless vector potential of an axial mag-
netic quadrupole oriented along the z axis. Con-
sideration of the Stormer problem for this configura-
tion leads to some interesting conclusions. To remove
the infinitesimal factor 5 in (27), we redefine C,, in
terms of the quadrupole moment 2b6M rather than
the dipole moment M. C,, is no longer the radius of
gyration of a particle trapped in a circular orbit
in the equatorial plane, but its continued use is
convenient. This redefinition leads to the replace-
ment of 5 by the factor 1 and

2 .
A, = 3\ :;r; 26

If we insert (28) into (9) and apply the saddle-
point condition (19)-(21), we find that

(28)

8, =.63.433°, p. = 1.063, ¥. = —0.7125.
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A series of typical Stormer forbidden-zone plots
are shown in Fig. 4. They are not symmetric in the
equatorial plane, and here for the first time is a
critical point out of the equatorial plane in the first
(and second) quadrant. Note that for ¥ > 0 the
curves @ =1 play the same roles (boundaries
of the inner and outer forbidden regions, respec-
tively) as they do for the dipole and single current
loop cases. At ¥+ = 0 the @ = —1 curve has not
disappeared as it did for the dipole and the regions
are symmetric. For ¥ > 0 the @ = =1 curves have
exchanged roles, the regions repeat their behavior
for ¥ < 0, and another critical point exists at

6* = 116.567°,
pf = 1.063 = p,,
7% = 0.7125 = —7,.

It can readily be seen that when ¥ = ¥, the inner
allowed region defined by @ = 1 is a maximum
shielded region. Moreover this same region obviously
lies entirely within the outer forbidden region which
exists for ¥ > 4*. The same argument applies to
the inner allowed region which occurs for § = v*.
We may, therefore, conclude that the symmetric

1971
DOUBLE RING CURRENTS

If in (26) we make the further parameter defini-

tion that u = /X = b/a and p’ = p/\ = r/a and
substitute, we obtain

A, =1L e, + e (29)
where

flz - 4p sin 6 (30)

(o' sin 0+ 1)° + (o' cos 6 F p)*"’

and (9) becomes

%5 EC + KC,
Q= o'\ sin @ + w2 (p’ sin 9)} (1)

The two new parameters have the significance that
the loops lie in the intersection of a cylinder of
radius p’ = 1 and a cone of half-angle @ = cot™,
the z axis being the axis of both cylinder and cone.
It is important to keep in mind the difference in
meaning between the double signs in (29) and those
in (30). Application of the saddle-point condition
to (34) leads to three simultaneous equations in
six variables:

region, composed of both inner forbidden regions, is ¥ = 1 {G n wW—=p2+1 o 29
totally shielded for all ¥ such that || > |¥,]. = 2r(p, sin 6)F |7* 4p, sin 6, +fr (32)
at Qs-1
7 :.'72'"25 7= -0.70

72-0.5

Q=

T
N

’

= 00 Q=

~i

Qs |

7 *0.7125. 3%

Unit of length is Csgt

Fia. 4. Forbidden regions for the magnetic quadrupole.
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g = (6 SE 6} {G* - %—Sﬁﬁj—# H} 33)

g = asn o) {Gz gt et - o Tl
+ m H ;}, (34)

where G, = KC, &= EC,, H, = [k}/(1 — E},J(D; —
Cy) % [k3/(1 — k))(D, — C5), D; = D(k;) is an-
other complete elliptic integral,* and H is like H,
but with an inversion of the double signs. Equation
(83) defines the condition 8Q/dp’ = 0 while (34)
comes from 0Q/36 = 0. The inequality condition
has been derived from (18) but is not shown.

PARALLEL CASE

Our problem now consists of choosing the upper
signs in (32)-(34) and finding consistent solutions
to these three equations and the inequality for the
outer forbidden region boundary ¢ = —1,—or for
the inner forbidden region boundary @ = 1,—for
a range of values of 6., g/, 7., &, and X. The most
straightforward method is to specify u, assume a
8., and solve for p/, \, and .. The results are shown
in Fig. 5 which is a set of curves of constant u,
plotted as a function of A and .. For clarity the
smooth variation of p/ along the curves is not in-
dicated. The limiting curve for u 0, given by
Levy,’ is included.

Each curve of constant u £ 0 is actually composed

EUGENE W. URBAN

typical and their behavior is shown in Figs. 5 and 6.
One branch (I) is defined by 6, % %7 and the varia-
tion of 4, is indicated. The critical  varies between
a minimum given by the half-angle, « cot ™'y,
of the cone on which the loop lies, and a maximum
which approaches the limit 7. Each point on branch
I is a simultaneous solution of (32)-(34) and the
inequality.

The remaining two branches give critical points
in the equatorial plane, §, = %w. Equations (33)
and (34) do not intersect for § = 3}u; these two
branches define simultaneous solutions of only (32)
and (33) and the inequality. The symmetry of the
vector potential guarantees that for @ i,
9Q/9p" = 0 for all p/, and the lack of information
from (34) is unimportant. One of the two equatorial-
plane branches (II) specifies inner saddle points
on the @ = —1 equipotential, as in Fig. 7(a). While
this inner saddle point is not important to our un-
bound radiation problem, it is interesting. The third
branch (IIT) defines outer critical points which cor-
respond to and resemble the single eritical point
found in the dipole and single loop cases.’

The properties of the forbidden regions change
rather rapidly near the common intersection of the
three branches; this area is seen in greater detail in
Fig. 6. p! increases monotonically along branches
II and IIT from points A to D to H, etc. A few rep-
resentative Stormer plots taken from the three
branches are shown in Fig. 7.

In the region from B to D on II, the inequality

of three branches. The branches for p = 1.00 are is not satisfied, indicating that a small relative
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Fi1a. 5. Plot of X\ vs ¥, as a function of x for @ = —1; double parallel ring currents.
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.270

.268
8 90° K
.266 ,) /
o7

264

.262 //%

X 260 o7
.258 BL/ //

256 Zi_(‘ -
ﬁ. -

254 720 8-s0h

.252 //

) -955 -~953 -951 -949 -947 -945 -943 -94|
%
F1a. 6. Detail of u = 1.00 curve for @ = —1, double parallel ring currents.

Gg\

maximum or minimum (but no saddle point) exists and an outer one at 0, = 90°. Figure 7(c) illustrates
on the @ = —1 curve. This is demonstrated in Fig. this situation which is analogous to dipole plus ring
7(b) as a disconnected, infinitesimal @ = —1 region behavior noted by Ray® and Kellogg and Winckler.®
in the equatorial plane. At point F two simultaneous Four separate allowed regions and three separate
saddle points exist, an inner one at 6, = 85.128° forbidden regions can be seen to exist for this con-

POINT A POINT C POINT F
POINT J
Fe-947]
A= .26
B LO
Qs>
\°'|
0 1.0 20 30
POINT L
oo
As 16
\ F%
Qs-i
Q=1
0 20 40 60

TFra. 7. Critical forbidden regions in the (p, 8) plane for double parallel ring currents, x = 1.00.
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F1a. 8. Plot of A vs #. as a function of u for @ = —1; double antiparallel ring currents.

dition. If we move away from F along one of the four ecritical points which do not, even when open, allow
possible critical paths, one or the other of the critical ~entrance of unbound particles. Moving along branch
points will disappear. Moving along branch I toward I toward X or along branch III toward G produces
J or along branch III toward E produces isolated outer critical points which, when slightly open, allow

Q=<1

N AN ANN

Unit of length is
d: p/)\ = rfa
Q=l
Q=1 =
Mﬁ) 7=-°.20 @W 7 o
s .

Fia. 9. Forbidden regions for double antiparallel ring currents, 4 = 1.00, A = 0.25.
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unbound particles to enter the innermost allowed
region. The important critical parameters are, there-
fore, given by the composite broken curve H to F to
K, etc. The (0Q/3p” = 0, @ = 1) curve is not shown,
but it intersects branch III in another interesting
point (L) which defines simultaneous inner and outer
forbidden region saddle points in the equatorial
plane [Fig. 7(g)].

ANTIPARALLEL CASE

For the antiparallel current case the lower sign
in (29) is chosen, and we proceed as before. The
asysmmetry of the configuration indicates that, as
with the quadrupole, no critical points can exist in
the equatorial plane. The resulting curves, shown in
Fig. 8, are much simpler than those for the parallel-
current case. Typical forbidden-region plots for u =
1.00 are given in Fig. 9. The same conclusions con-
cerning maximum shielded regions developed for
the quadrupole apply to this configuration. If ¥,
defines the critical point for some combination of
u and A, then the total maximum shielded region
is twice the inner forbidden region for that ¥,; it is
totally shielded for all 4 such that [¥| > |7.|.

1975

CONCLUSION

The preceding technique for studying the shield-
ing due to complex, axi-symmetric magnetic con-
figurations will certainly be no more exact in pre-
dicting the behavior of the allowed cone for these
magnetic configurations than is the simple Stérmer
method for the dipole. However, knowledge of the
existence of multiple critical points, of multiple
allowed and forbidden regions, and of the lack of
symmetry in the equatorial plane of the Stormer
plots for certain fields should be valuable in inter-
pretation of more exact treatments which employ
Lemaitre-Vallarta'? theory and which account for
shadow effects.

Immediate applications of this saddle-point
method to configurations of possible geomagnetic
interest are planned. These include dipole plus quad-
rupole and dipole plus double ring currents. It can
be predicted from the above calculations that the
dipole plus quadrupole will not have critical pass
points in the equatorial plane for any nonzero ratio
of quadrupole moment to dipole moment. The dipole
plus double ring current combination will have mul-
tiple critical points whose behavior will be even
more complicated than in the double loop case.
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Isotopic Space, Complex Conjugation, and Us Symmetry for Particles

S. TEITLER

U. 8. Naval Research Laboratory, Washington, D. C.
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The inherent U, symmetry over spinor spaces of the regular decomposition indicated previously
is discussed from the viewpoint of a single spinor space. It is noted that this symmetry does not yet
include isotopic spin. Isotopic space is introduced by considering that the space-time vectors and
its vector Clifford algebra are imbedded in the algebra of a six-dimensional Euclidean space. Three of
the latter’s dimensions are identified with ordinary space, and three are identified with isotopic space.
The “time vector’’ corresponds to the pseudoscalar element in isospace, and the imaginary unit is
expressed 88 a linear combination of the bivectors in isospace. The relation among complex con-
jugation, time inversion, and space inversion is thereby clarified. Some comments on the application
of these ideas to particle symmetry discussions are made. In particular one obtains as the first exten-
sion of the SU, symmetry of isotopic spin, a Uy symmetry for particles.

INTRODUCTION

N previous work’, we have used the vector Clif-
ford algebra, C,6, generated with the basis vectors

of Lorentz space-time L, for the description of one-
particle fields in which 4-spinors are identified as
elements of the minimal ideals of Cye. In II and
III, these minimal ideals were enumerated and
classified. Further, in III, two classes of unitary
symmetries inherent in this formulation were in-
dicated. These are (1) the SU, symmetry among
the components of a given spinor (which is in gen-
eral not compatible with Lorentz symmetry) and
(2) the U, symmetry among the spinor spaces
belonging to the regular decomposition of €4 (which
is compatible with Lorentz symmetry). In this paper,
we shall not concern ourselves with the unitary
symmetry of class (1), i.e., the spin unitary sym-
metry.

As may be recalled from III, the regular decom-
position consisted of expressing any member of C,,
in terms of the four minimal ideal bases generated
from the mutually annihilating idempotents which
may be formed from the basis elements of a four-
component commuting subalgebra of C,s. The U,
symmetry over these minimal ideals (spinor spaces)
leads to the invariance of the regular current density

I = ; (tkafeulka)s (a = a, b; ¢, d); (11)

where the sum is over the four spinor spaces so that
each 4" is a four-component element of a minimal
left ideal (or spinor). The subscript s means the
scalar part of the Clifford product.

This U, symmetry over the spinor spaces of the
regular decomposition means that we consider uni-

3, 1 (1965). (designated

18, Teitler, Nuovo Cimento Supﬁll. ignated
are as yet unpublished.

I); those papers designated IT and

tary combinations over spinors from each space each
of which satisfies the Dirac-like equation in its
respective space

k — 1> e, — igd)lt* = 0. (1.2)
Here « = mc/kh and ¢ stands for the (algebraic
charge)/hc. However, each of these spinors has an
image in every other space of the regular decom-
position which we obtain by transformation of its
minimal ideal basis (and possibly complex conjuga-
tion of its coefficients). The image however does
not in general satisfy the same Dirac-like equation.

Thus, consider for specificity, a standard type
minimal left ideal basis

0 . .
1 — & + e — ),
%(_613 + 3013 + ie23 - 7:6023),

%(_ie!i — ie03 + 8123 + 60123),

3
Il
[

(1.3)

. * 01 2 02
1(—ge! — e — € — ).

Then, for example, a suitable regular decomposition
may be generated from (1.3) by the operations of
complex conjugation K, (1}); the combination of
time inversion 7, space inversion P and K, (I3);
and finally the combination of T and P, (I}). Par-
enthetically it should be noted that we consider
these operations, except for K, to leave the spinor
coefficients unchanged. These coefficients may be
considered as functions of space-time coordinate
labels which are the quantity of measurement along
a given set of coordinate axes. The operations of
space or time inversion, or any other change of
coordinate axes under which the form of the spinor
coefficient is unchanged means that its coordinate
label arguments now refer to a measurement along
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the new set of axes. Thus for a spinor coefficient
¥z, --+), where 2, is a position aloag the e’-axes,
time inversion of L, basis vectors leaves the same
¥(2o, ---); but now the argument provides a posi-
tion along the (—e%) axes.

Returning now to our discussion of the relation
among spinors in different spinor spaces of the
regular decomposition we note for example that a
spinor with basis /; which satisfies the Dirac-like
equation has an image in the spinor space with basis
&5 which has complex conjugate coefficients and
satisfies the charge conjugate Dirac-like equation.
It may be recalled that in II, we defined TPK as the
charge conjugation operator since the application
of TPK to the Dirac-like equation yielded the
charge conjugate equation albeit generally in another
spinor space. We are following a somewhat different
procedure here. By starting with a spinor with a
“‘charge conjugate” basis which satisfies the Dirac-
like equation, we obtain its image in the original
spinor space which has complex conjugate coefficients
and corresponds to the usual charge conjugate
spinor. Similarly the image in the spinor space with
basis I, obtained from the application of TP to
spinors satisfying Eq. (1.2) in the spinor space with
basis 12 satisfies the mass conjugate Dirac-like equa-
tion. Finally the K image of spinors satisfying
Eq. (1.2) in the I} spinor space satisfies the mass—
charge conjugate Dirac-like equation in the I} spinor
space.

For other types of minimal ideals, e.g., the Weyl
and Majorana, the operations K, TPK, and TP
do not generate the complete set of minimal ideal
bases of the regular decomposition and the opera-
tions P, PK, T, and TK may be used. Note that
for a standard-type minimal ideal these latter op-
erations give a complete set but with a phase shift
of ¢'" between the (I, l;) and (I, I,) components
relative to the operations (1, K, TPK, TP). In the
original spinor space, their images satisfy the cor-
respondingly altered Dirac-like equation (see Table
I). One might consider a unitary symmetry over the
eight (possibly redundant) spinor classes in a single
spinor space which satisfy, respectively, the eight
Dirac-like equations in order to allow for the equiv-
alent of complete regular decomposition indepen-
dently of the choice of minimal ideal type. However,
as we shall argue below in Sec. III, the physically
expected unitary symmetry should be restricted
to at most U.,.

We note that while the operations 1, TP, TPK,
K, ete. provide for spinors which satisfly respectively
the ordinary, the mass conjugate, the charge con-
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TaBLE I. Dirac-like operators for the respective images
in the original or generating spinor space.

Operation - Image Dirac-like operator
3
Op = [x -5 28, — iqA“)] ;
1 #=0
=9
K= 7t hc"') q
3
TPK 037F = [:c -1 . e'@, + iqA,,)]
»=0
3
TP 05F = [K + i 20, — iqA,,)]
— =0

2

K 0f= [x +i Y0, + quF)]

#=0
3
P ogs[x—s:e"(ao-ing)—i-i Ee”(ak—iq.a,,)]
k=1

PK 0O5f= [x+ie°(00+ig110) -1

Ll

> ek(6k+igA,,):|
TK 05°= [K-—ieo(ag—}-iqu)-i—i kg, e"(ak-i-iqA,,):l

3
T 0p= [x+ie”(ao—ing)—i Zek(ék—iqu)]
k=1

jugate, and the combined charge-mass conjugate
Dirac-like equations and their space inverted coun-
terparts, there seems to be no consistent way to
obtain isotopic charge change in this manner. It
seems then that despite the plethora of inherent
unitary symmetries revealed in the C,, description
of spinor fields, we must look elsewhere for isotopic
spin. Fortunately, there is a natural way to extend
the formalism which is motivated by the desire
to treat, in a unified manner, operations involving
both space—time and complex conjugation and to
remove the indefinite metric as a starting point.
Thus we seek to widen our viewpoint (and our
algebra) to allow consideration of K on a similar
basis to T and P. We accomplish this by following
the ideas of a previous discussion® concerning the
basis of space-time in the next section.

I. CONCERNING THE BASIS FOR SPACE-TIME

While it has been very fruitful to view the time
basis element as a vector akin to space vectors,
there has always been the difficulty of mixing apples
and oranges arising because of the indefinite metric
of L,.* From the formal viewpoint of vector Clifford

2 8, Teitler (unpublighed).
3 Ses, e.g., C. Lanczos, Phys. Rev. 134, B476 (1964).
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algebras however, one may consider that time is
not necessarily a vector in a physical vector space
but rather some other algebraic basis element. Then
space-time would be an artificial construct suitable
in the description of certain physical phenomena but
not completely suitable for all. Of course the in-
troduction of such an interpretation could only be
justified if it encompassed all previous results and
provided insight into some other puzzles; most par-
ticularly here, the relation between the imaginary
unit ¢ in C;, and space-time, and the nature of
complex conjugation in Cis.

We wish then to imbed the space-time vectors
in a Clifford algebra generated with the basis of
some vector space. Since one of our conditions is
the removal of an indefinite metric as a starting
point, we consider the generating space to be Eucli-
dean. We may then identify the three space vectors
with three of these Euclidean basis vectors. The
smallest such vector space in whose algebra there
is a satisfactory ‘“‘time vector” is the six-dimensional
space, F,, having the basis vectors »* (u = a, b,
¢, 1, 2, 3) with metric [e"'] possessing only non-
vanishing diagonal elements all equal to e (e equals
1 or —1). The »*s satisfy the anticommutation
relations

v 4+ 0 = 26" (u,v =a,b,c,1,2,3). (2.1)

The algebra generated using the E, basis vectors
possesses sixty-four basis elements 1;v*; 4", (u < »);
< p < )™ (e <A< p <)) ot
(t <k <X < p < v); 0% where all Greek indices
run from a to 3, and we have chosen increasing
order of indices in the basis elements of the algebra
for specificity. This algebra C,, possesses one scalar
element, six vector elements, fifteen bivector ele-
ments, six vector elements, fifteen bivector elements,
twenty trivector elements, fifteen quadrivector ele-
ments, six quintivector elements, and one pseudo-
scalar element.

As indicated above we identify a triplet of vectors
of E, as the three basis vectors of ordinary space.
We assume triplets do not overlap so there are
only two such choices e.g. (v, v°, v°) or (v, v*, v°).
Thus we are assuming that the six-dimensional
Euclidean space should be considered as the direct
sum of two three-dimensional Euclidean spaces each
of which might correspond to ordinary space. For
definiteness let us choose (v', v*, v*) as the unit
vectors of ordinary space. Then v**° may be cast
in the role of “time vector’’ since it anticommutes
with the v/ (j — 1, 2, 3) and has self-product equal

to — o —e
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Then using (»**°, v', v, v*) one can generate a
subalgebra of C4s which is isomorphic to C,s when
we identify ¢ = v™, ¢’ = v’ (j = 1, 2, 3), and
make the same choice for ¢, i.e. ¢ = —1. Further,
in our present six-dimensional approach we note
that the bivectors (v**, v*, »*°) all have self-product
equal to —1 and individually commute with all
the elements of the subalgebra generated with (»**°,
v', v*, v*). Then we may expect that any of these
bivectors or a suitable combination of them may
be used to play the role of the imaginary unit.
Indeed for ¢ = F1, (1, v*°, +v*, v*°) form the
basis of a quaternion algebra @Q,, so that Cs may
be viewed as a quaternion-valued sixteen-element
algebra which includes a sixteen-element complex
algebra as a subalgebra corresponding to a thirty-
two-element real subalgebra.

In restricting our attention to the complex algebra
in which the bivectors (v**, v*°, v*°) are used in the
description of the complex unit, there seems to be
no reason to single out one of them to be identified
with 7 in Ce. Accordingly we consider 7 to be a
linear combination

i=a” + B + v, (2.2)

where

o + }32 + 72 = 1.
Note that 7 and »**° are invariant under a rotation
of axes in (v°, v°, v°)-space so that the formulation
using E, is only specified to within a rotation in
the (v*, v°, v°) subspace. .

Consider now a reversion in the algebraic indices
generated using the v, v*, v° basis vectors. This
means the opposite ordering of algebra of the a,
b, ¢ indices, e.g., abc — cba, etc. This may also be
viewed as an inversion of the ‘“‘vector” components
of the quaternion space Q.. Then

i + B + ' = —1, (2.3a)

but also
e =™ -t = —¢, (2.3b)
Thus a reversion in the (a, b, ¢) indices corresponds
to TK. However, since ¢’ is assigned as the pseudo-
scalar in the (v, »*, v°) subalgebra, we identify T
with inversion in the (v°, »*, v*)-subspace. Then we
obtain for complex conjugation alone, a combina-
tion of (1), inversion of the (v°, v°, v°)-subspace and
(2), reversion of its vector Clifford algebra (or in-
version of the quaternion space @,).
Since the operation of complex conjugation is so
involved in the change of sign of charge, it is reason-
able to suppose that other operations involving the
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charge are also intimately connected with the (»°,
v, v°)-subspace. Indeed the invariance of the form-
alism to rotations in the (% »°, v*)-subspace, indi-
cates that the latter may be identified with isotopie
space. We make this identification so that Es may
then be considered as made up of two three-dimen-
sional spaces, one which is ordinary space and one
isotopic space. The relative juxtaposition of these
two spaces and their algebras are involved in the
operations of K, TPK, TP, etc. Further another
significant aspect of the present formalism is that
it provides a link between the two spaces by iden-
tifying the pseudoscalar in the (»*, v°, v°) subspace
as the “time vector” used in the description of
dynamics in the (v, v, »*) subspace. In this way
we see how physical fields need both spaces for
their description and how the intimate relation
between space-time and complex quantities may
be viewed in a unified manner.

III. PARTICLE UNITARY SYMMETRY

Throughout our discussions of the application
of Cis to fields, we have consistently considered
homogeneous Lorentz transformations of the basis
vectors of L, and the corresponding transformations
of the basis elements of C,s. We have required
Lorentz covariance with respect to these trans-
formations. Moreover, we have coupled in, through
the dynamical requirement that the fields satisfy a
given Dirac-like equation, a covariance with respect
to inhomogeneous Lorentz transformations. How-
ever when we consider the entire set of Dirac-like
operators as in Table I, we may expect this dynamical
extension to the inhomogeneous Lorentz symmetry
for the fields is no longer valid in that they include
a relative sign change among space and time de-
rivatives, respectively. Since we do not wish to up-
set this dynamical extension we restrict possible
unitary symmetry among spinors of a given spinor
space to the set satisfying either (0p, O, OFF%,

Z7) or its parity counterpart but not both. For
specificity we consider the set containing Op. This
has possible unitary summetry U,.

We may further reduce this set by restricting
our considerations to those Dirac-like equations
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with the same relative sign of its mass factor, i.e.
a separation of particles and antiparticles. This
reduces our consideration to a U, unitary sym-

metry between spinor solutions to, say, Op and

TPK
D .

We wish to couple this U, symmetry to isotopic
spin symmetry. We note, however, that there is a
redundancy between the Op and OFF* solutions
when the charge vanishes. Hence, the isotopic spin
symmetry and the U, spinor symmetry are not
independent. We expect then a combined unitary
symmetry over only three types of spinor solutions,
one each when ¢ = 0, =|¢| in Op. This means we
have arrived at a basis for the occurrence of at
least the usual ad hoc SU; symmetry for particles.®
However using an argument similar to the one
used in the discussion of the U, symmetry for the
complete regular current density, we would arrive
at U; symmetry here. Indeed there are indications
that the U; symmetry for particles is the appropriate
first extension of isotopic symmetry even from ad hoc
considerations.®

It should be emphasized, especially to the reader
who has reservations concerning the embedding of
space~time in the algebra generated using F,, that
the U, particle symmetry obtained here relies only
on the occurrence of isotopic spin plus the inherent
unitary symmetry of the spinors arising from the
invariance of the regular current density. Thus it
is independent of the model of isotopic space and,
in particular, independent of the details of Sec. II.

This U, symmetry may be extended to include
antiparticles or in other words, the full U, sym-
metry possible with the (Op, O5T%, OpF, OF) sets
of solutions rather than the U, symmetry used
above. Also there is the further extension possible
by encompassing the spin unitary symmetry among
the components of the individual spinors (see III),
as in the work initiated by Giirsey, Radicati, and
Pais.®

4 See, e.g., M. Gell-Mann and Y. Ne ’eman, The Eightfold
Way (W. A. Benjamin, Inc.,, New York, 1964).

% See, e.g., S. Okubo, C. Ryan, and R. E. Marshak, Nuovo
Cimento 34, 759 (1964). .

¢ F. Giirsey and L. A. Radicati, Phys. Rev. Letters 13,
173 (1964); A. Pais, tbid., 175 (1964).
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Spin-Matrix Polynomials and the Rotation Operator for Arbitrary Spin*
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(Received 18 January 1965)

A technique for the expansion of an arbitrary analytic function of a spin matrix is developed in
terms of a complete set of polynomials based on the characteristic equations of the spin matrices.
The expansion coefficients are determined by use of the ascending difference operator from the caleulus
of finite differences. The expansions are valid not only for functions of & spin matrix but also for func-
tions of a complex variable. In the latter case the eigenvalues of the spin matrices are the zeros of
the polynomials. In either case the expansion coefficients are the same although of course in the case
of a spin matrix the series terminates. As an example the rotation operator for arbitrary spin is de-
veloped via its functional analog in terms of these polynomials, and the region of convergence of

the series to the function is investigated.

L INTRODUCTION

T is well known that an analytic function of
spin matrices can be written as a polynomial in
the spin matrices because there are (2s + 1)* linearly
independent matrices which may be formed from
the spin matrices and their produets for fixed spin s.
In particular, a function of one component of the
spin can be expanded in a polynomial of degree 2s
in that spin component. This is a direct consequence
of the Cayley-Hamilton theorem' which states that
a square matrix satisfies its own characteristic equa-
tion. Since the matrices associated with the com-
ponents of the spin operator for fixed spin have the
same eigenvalues, and since these eigenvalues are
repeated in the characteristic equations for higher
spin, it is convenient to develop a set of polynomials
of a complex variable based upon the characteristic
equations. An analytic function can then be ex-
panded in terms of these polynomials and the cal-
culus of finite differences applied to determine the
coefficients of expansion. In general, for the ex-
pansion of an arbitrary analytic function this re-
sults in an infinite series, but the series terminates
if the variable is replaced by a spin matrix. As an
application, the function e‘*’ is developed in terms of
these polynomials. It is shown that the series, for
|6] < = with any z, represents the function ¢**’. In
the special case that z is a component of the spin
operator, the series terminates, and the resulting
polynomial represents the rotation operator.

II. SPIN MATRIX POLYNOMIALS

Consider the set of polynomials

* Contribution No. 1649. Work was performed in the
Ames Laboratory of the U. 8. Atomic Energy Commission.

1See, for example, Bernard Friedman, Principles and
Techniques of Applied Mathematics (John Wiley & Sons, Inc.,
New York, 1956), p. 92.
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W1 = Z,
W, =(z— ez + 1),
Ws=(— 2)z — Dz(z + 1)z + 2),
M

If 2z is a spin matrix associated with integral spin
s, then the polynomial W,,,, is equal to zero and
all subsequent polynomials are zero by the Cayley—
Hamilton Theorem. This occurs since W,,,, = 0
is the characteristic equation for spin s and all higher-
degree polynomials contain this polynomial as a
factor. We shall call this the termination property
of the polynomials. Thus this set of polynomials is
suitable for the expansion of an analytic function
of integral spin matrices. However, to obtain a
complete set, a set of polynomials of even degree
must be added to the set given in Eq. (1). The most
general way of completing the set of polynomials
which preserves the termination property is to mul-
tiply the set given in Eq. (1) by 2 — ¢. The constant
¢ can be taken equal to zero since it will just re-
produce the original set of polynomials; so we choose
the set

1, Wosr =@ +0)l/e —n — 1)1, 2Waner;
n=201-.--. 2

For half-integral spin, consider the set of poly-
nomials

W, =1,
W, =(— e+,
Wi=@—-He—-He+ e+,

li

®@
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SPIN-MATRIX POLYNOMIALS AND THE ROTATION OPERATOR

If 2 is a spin matrix associated with half-integral
spin s, then again W,,., and all subsequent poly-
nomials are zero. To complete the set of polynomials
applicable to half-integer spin, we append the above
set with the polynomials zW,,. Our complete set
of polynomials for half-integer spin is then

WamGtn—bDYe—t-ml W
n=0,1,2.... )

Although the even polynomials W,, of Eq. (3)
and odd polynomials W,,,, of Eq. (1) form a com-
plete set in a very natural way, we choose instead to
augment each in the way indicated in order to pre-
serve the termination property. For this reason we
shall treat the expansion of an arbitrary analytic
function for integral spin and half-integral spin
separately. Thus we expand an arbitrary analytic
function

10 =0+ 3 alWaald) + > 0o )

for integral spin, and
f(z) = ;0 anW2n(z) + Eo ﬁnZW‘a’n(z) (6)
for half-integral spin.

III. EXPANSION COEFFICIENTS

It is apparent that one can determine the expan-
sion coefficients of Eqs. (5) and (6) by evaluating
the function at the successive zeros of the poly-
nomials which may be conveniently written as

Woeiin — k) =0, k=0,1,2---2n (7a)
and
Wyun—%—~%k=0, k=0,1,---2n— 1. (7b)

For example, setting z = 0 in Eq. (5) yields
¢ = f(0)

since all the polynomials vanish. Then with z =
+1, Wy, W, ete. vanish, and we have

a, = 3[f(1) + f(=1)] — £0),
bo = 3[f(1) — f{(—D).

In principle all the coefficients can be obtained by
continuing in this fashion. It is to be noted that the
coefficients are equally applicable if z is a complex
variable or if z is a spin matrix component; in the
latter case one need compute only a finite number of
coefficients.
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In order to determine the coefficients in a system-
atic manner, we introduce the unit step ascending
difference operator defined by?

V() = g(z) — gz — 1), ®

where ¢ is any function of z. The nth ascending
difference is
V') = 2 (e -n  ©
where (3) is the binomial coefficient. Clearly the
ascending difference of an nth degree polynomial is
a polynomial of degree n — 1. Therefore, if g{z) is
a polynomial of degree less than n, then V"g(2) = 0.
Consider
2k+1 <2k + 1

V2k+lW2"+1(z) = Zo (—l)i j )W2n+1(z -

(10)

which is nonzero only for n > k. Setting 2 = k, this
becomes

VW ns1(k)

2k+1
= S () Wm0 — b+ 20 )
From Eq. (7a) it follows that the terms in the sum
withj=%k —nk —n-+1, ---, k + n vanish;
hence, the lower limit in the sum of Eq. (11) is
7 = k + n + 1. But since the lower limit must be
equal to or less than the upper limit, we conclude
that k¥ > n. For k > n the left-hand side of Eq. (11)
vanishes identically, and therefore, we write

V2k+lW2n+1(k) = (—1)2"+1W2n+1(—n - 1) One
= 2n + 1! 6. (12)
Similarly,

V2l + DWoni(k + 1) = @n + 2)! 6. (13)

Decomposing an arbitrary analytic function f(2)
into even and odd functions, it follows from Eg.
(5) that

1.6) = 1.0) + Z 0 W snar(2) (14)
and
1@ = 3 bW ann(d)- (15)

n=0

2 See, for example, D. R. Hartree, Numerical Analysis
(Clarendon Press, Oxford, England, 1952), p. 53.
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Using Eqgs. (12) and (13), the expansion coefficients
are

a, = V™ ,(n + 1)/@2n + 2! (16)
and
B = V™ Yom)/@n + L. an

The expansions given in Eqs. (14) and (15), to-
gether with the coefficients given in Eqs. (16) and
(17), are suitable for cases of interest involving
integral spin.

In a similar manner one shows

V*Waulk — 1) = @n)! 8 (18)

and

VP ke + HWaule + 3 = 2n + D! 5. (19

Using Eqgs. (18) and (19), the expansion coefficients
of Eq. (6) are

a, = V,(n — 3)/(2n)! (20
and
Bn = V*"'foln + 3)/@@n + 1), @1)
where we have again decomposed f(z) into
10 = 3 alule), 22
1) = 3 BT e) 23)

The expansions given in Eqgs. (22) and (23) have the
termination property when applied to half-integral
spin.

As with all such expansions, one must investigate
not only whether the series converges, but whether
the series converges to the function on the left. This
will be considered in Sec. V for the expansions of
sin 26 and cos 24,

IV. ROTATION OPERATOR FOR ARBITRARY SPIN
The rotation operator for arbitrary spin is

R = ¢ = cos Bz + isin 62, 24)

where z = f-s, § is the direction of rotation, § is the
angle of rotation, and s is the spin operator (s, s,, 8,).
In the following we shall restrict the discussion
to integral spin and only state the results for half-
integral spin. In the derivations we shall regard z
as a complex variable since the coefficients are in-
dependent of the nature of z. Using Egs. (14) and
(16),

T. A. WEBER AND S. A. WILLIAMS

o 2n+2
cos 0z =1 4 E v (;;S_I[_og;!-{- 1]

n=0

2W ai1(2).

(25)
But from Eq. (9),
V2u+2 cos {e(n + 1)}

2n+2

=5 (™ 2 cos Lotn 4+ 1 — b

k=0

2n+2

= Re X (—1) (2"" + 2) Blnt1-k)

k=0

= Re (esiﬂ — 6—0}0)25-}'2
— (_1)s+12a+1(1 — COS a)mt-l. (26)
Therefore, Eq. {(25) becomes
_ o (_.1 n+123+1
cos bz =1 + ,.Zo———)—_—@n o
X (1 — cos )" "2Wyner(2). @7

Similarly, using Eqs. (15) and (17) we obtain

P
sin 0z = § On + D% 6(1 — cos 6)'Wanes(2).

(28)

One can also easily obtain the expansion of sin 6z by
differentiating the expansion of cos 6z, Eq. (27), with
respect to 6. In order to verify that differentiation
of the expansion of sin 6z yields the expansion of
cos B2, it is convenient to make use of the identity

22W211+1(z) = (n + 1)2W2n+1(z) + Winss(2). (29)
Upon differentiation of Eq. (28) with respect to 8, we

have

z cos Oz = gé—;—-—%‘%[n+(n+ 1) cos 6]
X (1 — cos 6)"Wapia(2). 30)

Multiplying Eq. (27) by z and using Eq. (29), we
obtain

zcos&z=W’1(z)+ Zﬂ

2 G T s O™
X {n + 1)2W2n+1(z) + W2n+3(z)}
= 3 A OW - )

Simple algebraic manipulation shows that the ¢.(6)
are equal to the expansion coefficients of Eq. (30).
The above differential properties will be used in the
discussion of the convergence of the expansions.
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For half-integral spin the expansions are

cos gz = "Eo (= @ );'2” cos 16(sin 16)°"W,,(2) (32)
and
sin 6z = Z (e (sin 16)"" 2 W, (2). (33)

2n + 1)

In the case that z is 3-s, the upper limit of Eqgs.
(27) and (28) isn = s — 1, while in Eqgs. (32) and
(33) the upper limit is n = s — 3 because of the

n=0

termination property. For example, with ¢ = %
we have, from Eqs. (32) and (33), the familiar result
e = cos 10 + 2iB-s sin 16 (34)
or, in terms of the Pauli spin matrices ¢ = 2s,
e = cos 10 + 15- ¢ sin 36. (35)

V. CONVERGENCE OF THE sin 6z AND
cos 6z EXPANSIONS

Again we will discuss the case of integral spin;
the results for half-integral spin are the same. Con-
sider the expansions of the cos 6z and sin 6z as given
by Egs. (27) and (28). The ratio test shows that the
series are absolutely convergent if [sin 36 < 1
for arbitrary complex z. Hence, either series, con-
sidered as a power series in sin £8 has a radius of con-
vergence of one in the complex sin 16 plane. This
region of convergence can now be mapped into the
complex 8 plane, but the mapping is one-to-many.
Consider the region in the complex ¢ plane which
contains the point 6 = 0 (i.e., region containing
—r < 8 < m, 0 real). For the point 8§ = 0, it is
obvious that the series given in Eqs. (27) and (28)
converge to the cosine and sine functions evaluated
at that point. In view of the fact that differentiation
of the sine expansion gives the cosine expansion and
vice versa, as discussed in Sec. IV, it is clear that the
analytic function represented by either expansion
and all of its derivatives equals the function on the
left and all of its derivatives at § = 0. Hence, the
expansion is equal to the function it perports to
represent in the open region of convergence in the
complex 6 plane containing the point 8 = 0. None
of the other regions of convergence in the complex
6 plane contain such a point for arbitrary z. In par-
ticular for 6 real, the expansions given by Eqgs. (27),
(28), (32), and (33) converge to the appropriate
function only in the open interval —7 < 0 < =
for arbitrary complex z.

If 2 is an integer, then Eqgs. (27) and (28) terminate
and therefore converge to cos 6z and sin 6z, respec-
tively, for all 4. Similar remarks apply to Eqs. (32)

AND THE ROTATION OPERATOR
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and (33) if 2 is a half-integer. It should be noted
that Eq. (28), with 2z an integer, and Eq. (33), for
z a half-integer, correspond to two of Dwight’s
formulas® for sin n§. The rotation operator as a
polynomial in the spin matrices may also be de-
duced* by using these formulas of Dwight.

V1. CONCLUSION

It is obvious that one can apply the techniques
presented here to the problem of a function of an
arbitrary square matrix 4. Of course, if the eigen-
values do not differ by fixed amounts, the ascending
difference operator will be of little use. However,
one can construct a set of polynomials in the fol-
lowing way: 1, (4 — A\)(A — N), -+- , where
A\, A, --- are the eigenvalues. The highest non-
vanishing polynomial will be of degree one less than
the order of the matrix, n. These obviously form a
complete set so far as functions of the matrix A are
concerned. In order to determine the coefficients,
one successively evaluates the function at A;, A, - - -
determining one coefficient at each substitution,
rather than solving n simultaneous equations as is
usually done.® The extra conditions necessary to
determine the coeflicients for the case of repeated
roots are obtained from the derivatives of the func-
tion.

One application of the above techniques is the
development in terms of the polynomials W, of the
Lorentz transformation operator for particles of
arbitrary spin. With this operator one can, for ex-
ample, obtain the Hamiltonian for the particle.®
The present explicit calculations are limited by
mathematical complexity to small values of the spin.
The authors are presently developing the explicit
form for arbitrary spin.

Note added in proof. R. van Wageninger, Nuecl.
Phys. 60, 250 (1964), gives the results obtained by a
computer calculation of the spin-dependent coef-
ficients in an expansion of the rotation operator in
powers of 3-s for s = L to s = 6.
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We extend the investigation of the long time behavior of a model consisting of N two-level atoms
interacting with radiation to include dissipation, pumping, and center-of-mass motion. We show
that when the effective expansion parameter ¥N#% is small, the self-consistent field approximation
remains the solution to lowest order in §N#%. The inclusion of the center-of-mass motion introduces
another dimensionless parameter g into the theory. We show that when this parameter is small, the
electromagnetic field amplitude varies slowly on the time scale of the center-of-mass motion. We
solve the equations of motion in this slowly varying limit by an extension of the Bogoliuboff-Kryloff
theory of quasilinearity to the problem of time-dependent integral kernals. We find the unique stable
stationary state and show that in the slowly varying limit the stationary state is approached inde-
pendent of initial conditions. We calculate the frequency shift to second order in 8. The first-order
frequency shift is the same as that calculated by Lamb. We compare our steady-state solution with
recent experiments with lasers. We include the effect of collisions in the steady state.

1. INTRODUCTION

N this paper we extend our model' of inter-
acting radiation and matter to include dissipation,
pumping, and center-of-mass motion. In I we showed
that the lowest-order solution to our model of N
stationary two-level systems in the presence of radi-
ation is the self-consistent field approximation which
we refer to as SCFA. In the absence of center-of-
mass motion, we found there was only one dimen-
sionless dynamical constant in the theory, namely

IN5 = e’ [(a] et |b)|* 2n/RQ) = (dx) '\ = o,

where 9T is the number of two-level systems per
unit volume, (a| e-r |b) is the dipole matrix element
between the two levels of the atom, Q is the cavity
frequency, r, is the classical electron radius, and A
is the wavelength of the radiation. The second equal-
ity follows from a sum rule or equivalently from
evaluating the matrix elements with harmonic oscil-
lator wavefunctions.
If we restore dimensions we find

INFwy = a'wy = o}, = (e’ /m) = (w,/2),

where w, is the atomic frequency and w,, is the plasma
frequency. The close relationship between w; and
w, is not coincidental. They both are measures of the
collective response of a system of sources in inter-
action with the electromagnetic field through Max-
well’s equations. The plasma frequency in this con-
text arises from the self-consistent interaction of

* The research reported in this paper was sponsored in
art by the Air Force Cambridge Research Laboratories,
: f(sige of Aerospace Research under contract No. AF 19(628)—

1 C. R. Willis, J. Math. Phys. 5, 1241 (1964), hereafter
referred to as 1.

charges with transverse electromagnetic waves. The
laser frequency w; arises from the self-consistent
interaction of induced dipoles with the electromag-
netic field.

When we consider the center-of-mass motion of
our two-level systems, we must distinguish between
solid and gaseous behavior because these introduce
quite different characteristic times into the problem.
In this paper we consider gaseous lasers, so the largest
center-of-mass characteristic frequency is wp, the
Doppler width. Thus, we have a second dimen-
sionless constant § = a(ws/wp) = (wn/wp) which
measures the magnitude of the effect of the center-
of-mass motion. For most gas lasers, 8 is much less
than one, which is fortunate because 8 small means
that the field amplitudes vary slowly compared with
the center-of-mass motion. Since a is very small for
gas lasers, the SCFA is valid and, in addition, with
B small we show that our model of N two-level sys-
tems satisfies a generalization of the quasi-linear
theory of Kryloff-Bogoliuboff.” If 8 were much larger
than one the center-of-mass motion would be slow
compared with the times over which energy is ex-
changed between radiation and matter and we would
have relaxation oscillations.

We introduce dissipation and a pump, phenom-
enologically, as linear terms in the operator equa-
tions of motion. With dissipation we have three
more characteristic times which are nondynamical.
The relaxation time for the diagonal matrix elements
of the matter density matrix is T, the corresponding
time for the off-diagonal matrix elements is T, and
the relaxation time for the radiation is T',. We show
Wloff and N. Bogoliuboff, Introduction to”Nonlinear

Mechanics (Princeton University Press, Princeton, New
Jersey, 1947).
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that the steady state of the system is a very sensitive
funection of T,.

In Sec. II we introduce the Hamiltonian, derive
the operator equations of motion, and formally
eliminate the matter dipole operators. Although our
treatment of the Hamiltonian in Sec. II is self-
contained, we refer the reader to I for a more
thorough treatment.

In Sec. III we find the steady-state solutions for
the energy of the electromagnetic field and for the
steady-state population inversion. For the steady
state we require only that o < 1.

We solve the time-dependent equations to second
order in 8 in Secs. IV and V. We show that no matter
how the system is started when the pump power
is at or above threshold, the system approaches the
unique stable steady state derived in Sec. III. We
show further that a full solution to all orders in
B does not affect the steady state but only the rate
at which the steady state is approached. However,
the frequency shift is a power series in 8, and we
calculate it to second order. For small 8 the series
converges very rapidly.

In Sec. VI we discuss the steady-state electro-
magnetic energy density as a function of cavity
frequency and compare our results with recent ex-
periments.®**

In the Appendix we derive the effect of the center-
of-mass motion including collisions on the behavior
of the laser. In particular, we show that the intro-
duction of collisions effectively decreases T'.

II. HAMILTONIAN OF THE MODEL AND THE
EQUATIONS OF MOTION

We consider N two-level systems with energy
levels E, = 1(hw,) and E, = —%(%w,). The Ham-
iltonian for the atoms is

M) =" Yo 4 HAE D, @)

where

t 1
bo = 20,0, — 1, [0a, 0als =1,

[o'a) o'u]+ = [017 UL]+ = 0;
[0’:,, 0';] = [0':,, a'ﬁ] = [o'ou ‘Tﬁ] =0 for a# 8,
and where X = (X; -+« Xy), P = (P, --- Py).
The plus subseript indicates an anticommutator.

The vanishing of the commutators for different
atoms represents the fact that we are treating the

3R. A. McFarlane, W. R. Bennett, and W, E. Lamb,
Appl. Phys. Letters 2, 189 (1963).
4 A, Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1963).
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atoms as distinguishable; i.e., we are assuming the
density of atoms to be sufficiently low so that the
overlap of their wavefunctions is negligible and thus
the effects of symmetry may be neglected.

In this section we do not need the properties of
H,.; therefore, we defer a thorough analysis of it
to the Appendix.

A convenient representation of the matter system
is a Kronecker product of single-particle spaces.
In the single-atom space we may represent the opera-
tors in the following form:

1 0
b = (0 —1)'

f_(o 1) _(00)
“=\ o/ =7 \1 o)

The Hamiltonian for the electromagnetic field is
H, = X2, (e + 3, 2.2)
where
las, 0] = B, a = ChQ) M py — 1%qy),
ar = k) Hpw + i%q).
The vector potential is
AR, t) = cdn) 2o aqi(DEi(@),

where E,(x) is the kth cavity eigenfunction and e,
is a unit vector in the plane of polarization.
The interaction Hamiltonian, H;, is

- [iadn= — 2 3 {oa0] iX.) o)
+ a':,(a[ (X a) |b>}quk(Xa), 2.3)

where X, is the center of mass of the ath atom and

Hi=

(@l i) ) = C/2mBEN" [ viw)

X {&pE(X, + 2) + E.(X. + x)ck'P}'//b(x) dsx:

where p = (1/7)V.. In the dipole approximation we
have

(@] :(Xa) [b) = (¢/m)a] esep [B),

and our interaction Hamiltonian is

Hy = —(¢/m) 2 2 BuXo)gs

X {ou(al &-p [0) + (b] &P la)on}.  (2.4a)
If wo &2 Q;, then H; becomes
H, = Zk Za 'Ykr'k(Xa)pk”M (2'4b)

where we have used
o t
7/w0qk = pk, Mo = Oa + a'a;

<a| Sk'p lb) = imo<al £, *X lb).
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The definitions of v, and TW(X,) are v, =
ela] & x [bY(dn/V)} and TW(X,) = E.(X.)V?, where
V is the volume.

Although Eq. (2.4b) is no easier to solve than
Eq. (2.4a), we use Eq. (2.4b) to facilitate comparison
of our results with results of semiphenomenological
theories which in effect use Eq. (2.4b).

When we express H; in terms of dimensionless
operators and variables, we obtain

H _H H., .
%0 —_ ﬁ_wio M; = Z“ Zk 'ykI‘k(Xa){(h:O'a +ako-;l;}

+ Xo e ulX ) alor + amo.),  (2.5)

where ¥, = (hwo) ' (72:,/2)%y, is dimensionless and
essentially independent of k& because @, =~ w, and
{(a| &-x |b) does not depend on the magnitude of £,
only its direction. In I we retained H,4, and we found
it made no contribution in lowest order. We drop
H,; here for no other reason than to make later
calculations clearer.

Since we are considering a single mode, we drop
the k subseript from 4., T, a., and a), combine
Egs. (2.1), (2.2), and (2.5), and obtain

+

v = h(N) + Hom + He + hog¥ 2, T(X,)

X [a'va + aou].  (2.6)

We obtain the equations of motion for the radia-
tion and matter operators when we use Eq. (2.6),
the commutation relations, and the definition of the
time derivative of an operator,

ih(0/at) = [0, Hay).

The equations of motion for a, af, o, and ¢' are

id — Qa = Jwo f} o, T(X.),  (2.7a)
10 — W0 = —Foad T'(X.), (2.7b)
id" + Qa' = —Fw, ZN; (X)), (2.7¢)
it + wooy = Fwot ¢aT(X4). (2.7d)

From the rigorous equations of motion, Egs. (2.7a)—
(2.7d), we observe that, given a formal solution to
Egs. (2.7a) and (2.7b), we can write down the formal
solution to Eqs. (2.7¢) and (2.7d) by taking the
complex conjugate of the solution for Egs. (2.7a)
and (2.7b). Also we see that more natural variables
than o, and o are

£o= oul(Xa), ) =oiTuX.). (2.8)

If T(X.) = sin kX, then £} is the operator for the
kth Fourier sine transform of the operator a,.
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When the definitions, Eq. (2.8), are substituted
in Egs. (2.7a) and (2.7b) and when Eq. (2.7b) is
multiplied by T'(X,), we obtain

id + ¥(a/T) — Qa = Fwo Ja Ea,

0.9
I'(X.)

(2.92)

— wofa = "iwoa&arz(Xa):
(2.9b)

where we drop the k subscript because we are dealing
with a single mode. The term I' represents the
time derivative of I' which is time-dependent be-
cause X .(f) is an “operator” in the 6 N-dimensional
classical phase space of the center-of-mass variables,
“Qperator’”’ here means that X ,(¢) is not an average
value but is the instantaneous value of the position
of the ath atom at time f. As discussed in the Ap-
pendix, we treat the center of mass classically. We
could equally well treat the center of mass quantum
mechanically by keeping track of the order of the
operators " and T'.

We also inserted two of our three phenomeno-
logical relaxation times. T, is the radiation relaxa-
tion time of the matter free cavity usually written
as (»/2Q)"' and T, represents the relaxation time
of the offdiagonal matrix elements of the density
matrix which is analogous to the T, of paramagnetic
resonance theory.

We solve Eq. (2.9b) for £,;

i + i — it

N N T G P O

¢ 17
X exp [f a—-loi—t,r,(t—zdt”] dt’
r

~ it | XL OITIX.L()]

X e T g (OB dt, (2.10)
where

A=w—Q n=T:, b=a", {=¢"%
When we substitute Eq. (2.10) in Eq. (2.9a), we
obtain

l’, b ~2 2 ud ‘ N, —rva(t—t’)
+T;= we Z I'a, )T, t)e

X e~ AU ()b dt .
The complex conjugate of Eq. (2.11a) is

(2.11a)

. 4 bf N t ,
b+ = 7 }'_‘,f (o, HT(a, t)e """

X 2 6 (b () at,
where I'(a, t) = T[X.()].

(2.11b)
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The equation of motion for ¢, is

i% — 2’7@0{§Lb€iAl . gabfe-iAt}

_ i(&a — &0)
T, !
2.12)

where we have added the combined dissipation and
pumping term. The term, T',, is the relaxation time
for the diagonal matrix elements of the density
matrix and N ¢, is the population difference produced
by the pump in the absence of radiation. We leave
the equation for the time derivative of ¢, in the
form of Eq. (2.12). However, if we substituted Eq.
(2.10) in Eq. (2.12) we would have reduced the
(BN + 2) equations for £,, £., a, a, and ¢, to the
(N + 2) equations for ¢,, b, and b'. These equations
are still functions of 6N center-of-mass variables
through the I's. This is as far as one can go with
a rigorous solution. In the next section we introduce
an approximation procedure that permits us to
solve the equations.

III. STEADY-STATE SOLUTION

In I we showed that the SCFA is the solution to
the quantum mechanical Liouville equation to lowest
order in ¥N¥ in the absence of initial particle-—field
correlations and neglecting the center-of-mass mo-
tion. We showed that when one went beyond the
first order in ¥ N¥ particle—field correlations appeared
and average values of operators were no longer
sufficient for a solution.

Since we are now considering the motion of the
center of mass we have three sets of variables: (1)
electromagnetic field variables; (2) internal degree
of freedom variables; and (3) center-or-mass varia-
bles. Hence, we have three different kinds of correla-
tions possible. However, since initial correlations are
dissipated by the irreversibility and since the pump
is too crude to maintain subtle correlations, the
only way that correlations can be maintained is by
the interaction Hamiltonian. Thus, any correlations
that appear must be of the order of (N¥)” or higher.
This, of course, is the usual case; plasmas and lasers
are exceptional in that, due to the long-range nature
of the force, there is a SCFA which depends only
on average values with no correlations and which
appears to only first order in ¥N7.

The effects of the center-of-mass motion, although
important, are small [in the ratio of (wp/ws) ~
107°], so we expect the SCFA will still be a solution
when the atoms are moving. The statement of the
SCFA, i.e., “each atom sees all the (N — 1) other
atoms to the lowest order through the electromag-
netic field,” remains true even though the atoms
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are moving. Their motion will affect the value of
the field but not the fact that each atom sees the
average field. It is true that new correlations appear
between the state of motion of the atoms and the
internal state of the atoms, but these are all of
order (§N%)? or higher.

Since the derivation of the extended SCFA is
a straightforward generalization of Sec. III of I,
we do not give a formal derivation here but obtain
the equations directly by taking a trace of Egs.
(2.11a), (2.11b), (2.12), and (2.9a) with a product
density matrix. The density matrix consists of a
product of N one-particle density matrices with N
one-particle center of mass distribution functions
and with the density matrix of the electromagnetic
field. This is completely analogous to writing down
the Vlasov equation directly instead of starting
with the N-particle Liouville equation and deriving
the Vlasov equation for the case where there are
no initial correlations.

When we take the trace of Egs. (2.11a) and
(2.11b) in the extended SCFA, we obtain

&) + (/T
=t [ DR 8RO @Ne) at
(3.1a)
@ + (b")/T2)
=w?mewa”w““NM%Ww»w
(3.1b)

where w2 = §N¥w? and K(, t') = (TET')). The
symbol (O) represents the trace of O over the product
of N one-particle density matrices with N one-
particle distribution functions for the center of mass
and with a density matrix for the electromagnetic
field.

We obtain the equation of motion for {(4) of Eq.
(2.12) with the product density matrix

i(d) = 2o [ENbY™ — (XD}
+ G/TYG — (8). (32)

In order to eliminate (£') and (£), we take the trace
of Eq. (2.9a) with the density matrix in the SCFA,
and we obtain

i(by + i(b)/T.) = w¥NEe ™,
Wby + i(BY/T) = —wNEe™".
When we combine Eqgs. (3.2) and (3.3), we obtain

el + L) = 272 - £ 1 0.
(3.4)

3.3)
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If there were no dissipation Eq. (3.4) would be a
constant of the motion which for w, = @ is the
energy. The fact that Eq. (3.4) is independent of
the center-of-mass variables is a consequence of the
SCFA which makes the solution of the equations
much easier.

Since (b") and {b) are complex numbers, we find
it convenient to define the following quantities

B®)Y = e and (b'@) = f(H)e* .

When we substitute the above definitions in Egs.
(3.1a) and (3.1b) and add the resulting equations,
we obtain

4/ = ok [ K@, o)
X cos [A(t — ) + 9(t") — $(0)] V.

In the steady state the time derivatives of f and
{¢) vanish and the time derivative of ¢ is a constant.
The reason that we have a frequency shift, w, = ¢,
in the steady state is that we introduced the b vari-
ables by splitting off the unperturbed cavity fre-
quency , not the actual operating frequency Q' =
Q + w,. When we set f = 0 in Eq. (3.5) and let
{ — o, we obtain the steady-state population dif-
ference per atom

(3.5)

@, = {w’LT, [ " K.(n)e cos A'r d} (3.6)

where A’ = wp — @ — w, = A — w, is the difference
between the atomic frequency and the actual cavity
frequency ©@'. We determine the steady-state fre-
quency shift in Sec. IV. The expression K,(r) is
equal to K,(¢ — ¢'), where the subscript s indicates
steady state, and we use the fact that K(, ') de-
pends only on the time difference in the steady
state as we show in the Appendix.

When we set the time derivative in Eq. (3.4)
equal to zero we obtain

ﬁ = (¢ — <&>s)(NTr/4Tl)'

We conclude this section with a discussion of Eq.
(3.4). The general solution of Eq. (3.4) is

(&) + @/N)f = 6[l — &™)

~ B2 [ o — 7 dr.

3.7)

3.8)

If the approach to the steady state is slow compared
with T, then for { > T,, we obtain

41,

@)+ 57 £ = do. (3.9)
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‘We show in Sec. IV that almost always the approach
to the steady state is slow compared with 7T';. Since
the steady-state value of Eq. (3.9) is the same as
the steady-state equation (3.7), we are guaranteed
Eq. (3.9) approaches the correct steady state. Con-
sequently, Eq. (3.9) is usable even if the approach
to the steady state is not rapid compared with T,
except for those situations that depend on the de-
tailed wiggles of the approach to the steady state.

IV. SOLUTION OF THE TIME DEPENDENT
EQUATIONS

The solution of the three first-order nonlinear
integral equations, Eqs. (3.1a), (3.1b), and (3.4),
constitutes the extended SCFA solution to the quan-
tum mechanical Liouville equation where initial cor-
relations are absent or dissipate rapidly. Under these
conditions the solution of the three equations is a
rigorous solution to order ¥N4. We cannot solve
these equations exactly, not so much because of
the nonlinearity, but because K(I, ') has a trans-
cendental time dependence even in the simplest
case of free particle motion. In a future publication
we will show the nonlinear equation can be solved
rigorously in closed form for stationary atoms.

As we mentioned in the Introduction, there is
an additional dimensionless constant, 8 = a(wo/wp)
when we consider the motion of the atoms. Thus,
if 8 is very small we can expand in powers of 8 or,
conversely, in powers of 87'. Fortunately, 8 is of
the order of 0.1 or less for most gas lasers. Small
B means physically that the field amplitudes vary
slowly compared with the center-of-mass motion
and, consequently, the fields do not see the instan-
taneous velocity of the center of mass but respond to
certain integrals of the center-of-mass velocity
distribution. However, the exact steady state is a
sensitive functional of the center-of-mass velocity
distribution function as we show in Sec. VI.

When we assume that (b), (b"), and {¢) are slowly
varying with respect to the characteristic time scale
of the center-of-mass motion, Egs. (3.1a) and (3.1b)
reduce to the following form:

(0 + <Ti> = 22 (o)) fo KRG, e g,
(4.1a)
t 2 wDt _
(b?) + %2 _ :_; (&)(bf) [.' K, t’)e_”"e"“' at,

(4.1b)

where 5, = »,/wp and A = A/wy, are dimensionless
variables. We assumed that the largest frequency
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associated with the center-of-mass motion is wp. If
there is any center-of-mass frequency greater than
wp, it should be used instead of wp. The choice of
wp does not imply free-particle motion. The term,
K(t, t'), includes collisions. If in Eqgs. (4.1a) and
(4.1b) we temporarily introduce a dimensionless
time r = wf, the dimensionless variable measuring
the rate of change of (b) and (b') is 8 = (wr/wp).
This is the basis for our assertion that 8 << 1 implies
slow variation. In the next section we show that
the systematic solution to Eqs. (3.1a) and (3.1b)
is a power series in 8. The solution to lowest order
in B is shown in Eqgs. (4.1a) and (4.1b).

When we substitute Eq. (3.8) in Egs. (4.1a) and
(4.1b), we obtain

F L =9y | UK, ) cos A dir
Tr wp 0 ’ T
(4.2a)

2 wpt

b = ©L (4 f K(t, V') sin ¢ di'.  (4.2b)

Wp 0
We observe that the requirement of slow variation
on (b) and (b") implies the slow variation of f and ¢.
We simplify Eq. (4.2a) by observing that for
t > wp~' the upper limit on the integral approaches
infinity and K(¢, t) approaches its steady-state
value, K, (t — ¢/). Consequently, for ¢ > wg', Eq.
(4.2a) with the help of Eq. (3.6) reduces to the
following form:

f =4 — Bf), (4.3)
where
_ Fwig, 1 oo T12 0L
4= wp T’ B—2F°T,pr
and where
R cos Ar\ 5.,
Fio = fo TK’(T)<sin z)e dr. (44
The solution of Eq. (4.3) is
A/B)}(0)e*!
() = ——(A/BVIO @5

{(4/B) +FO* — 11}

Equation (4.5) states that, no matter what the
initial field intensity is if A > 0, then for ¢ 3> A7},
f(t) approaches (A/B)*. However, from Eq. (3.7) we
see that (4/B)is just f,. If A < 0, then f approaches
the only other steady state which is f. = 0; ie.,
there is zero field. Consequently, the condition 4 = 0
is the threshold condition.

The threshold condition is

Nwp

W = FrrE vy = Mo @O
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Equation (4.6) gives the population inversion per
unit volume, 9Ud,, required by the pump to start an
oscillation. Since w7 is proportional to 97, the middle
term of Eq. (4.6) is independent of 91. Any increase
in pump power beyond the threshold condition, Eq.
(4.6), goes directly into the electromagnetic field as
we see by rewriting Eq. (3.7) in the form

I f

v = SJZ(610 - (a)l)!

Yy @.n

where V is the volume. Since 91{¢), is independent
of 3, the pump must first produce a population
inversion density 91(¢), given by Eq. (4.6). This
corresponds to zero electromagnetic field, As the
pump power is increased the electromagnetic energy
density increases linearly with pump power while
9N(é), remains essentially constant. There may be
a slight dependence on the pump power of K,(r)
through its dependence on the collision frequency
which is dependent on pump power.

The above discussion refers to the case where
the number of two-level systems per unit volume
9 is fixed and given. Then the threshold condition,
Eq. (4.6), is met by increasing 4,, the fractional
inversion per atom. For gas lasers we do not have
permanent two-level systems, but they are created
by the pump. So for gas lasers we take &, equal to
one, and the threshold condition becomes the re-
quired number of two-level systems per unit volume
9N the pump must produce to start oscillating. An
increase in pump power above threshold, in effect,
leads to an increase in the number of two-level
systems. If laser action took place between two
levels, one of which was the ground state, the number
of two-level systems would be the same as the num-
ber of atoms. However, as is usually the case, when
both initial and final states are excited states, the
number of two-level systems is the number of atoms
excited to either of these two levels.

When ¢ > A~', we can obtain the first-order
frequency shift directly from Egq. (4.2b), which
becomes

2 E3
b =28, [ K ()™ sin &r dr =
D [}

w

0
;—. %, 4.8)
where we use Eq. (4.4). The first-order frequency
shift, Eq. (4.8), is equivalent to Lamb’s® first-order
frequency shift in the case where we assume K,(7)
depends only on free-particle motion.
The condition that we can use the simpler Eq.
(3.10) for the energy instead of Eq. (3.9) is

8§ W. E. Lamb, Phys. Rev. 134, A1429 (1964).
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T, [(«fs - 1] <l
For a typical gas laser this condition is valid for
pump power up to a hundred times threshold. If it
is violated we use Eq. (3.9) which would not change
the first-order frequency shift and would not affect
the steady state. It would make a small correction
to the second-order frequency shift and to the rate
of approach to the steady state.

In the next section we show that as you go to
higher and higher powers of 8 the steady state is
unaffected, only the rate of approach changes. How-
ever, the frequency shift ¢ is a power series in 8 and
depends on the rate of approach to the steady state
in the second and higher orders of 3.

We have shown that, although the nonlinearity
is small, it serves two important functions. First,
out of all possible periodic solutions to the linearized
equations it selects only one, namely the steady-state
equation (4.7). The second function is that it fixes the
form of the steady state independent of the dynamics
of the approach. The first function requires the
nonlinearity as measured by 8 to be small in the
sense of the Bogoliuboff-Kryloff® quasi-linear theory.
The second function is completely independent of
the smallness of 3.

V. CALCULATION OF FREQUENCY SHIFT TO
SECOND ORDER

In this section we demonstrate the generalization
of our lowest-order calculation to higher powers
of 8. In the first-order calculation we replace
(6@t — 7)Xb({ — 7)) in Egs. (3.1a) and (3.1b) by
{(¢@®)}b®). In order to go to an arbitrary order
we expand {(¢(t — r)){{ — 7)) in a Taylor series

(@t = DXt — ) = <&<t>><b(t>>
— o 2 o) + 5 2 LooNbN + -

G.1)

When the first two terms of the Taylor series,
Eq. (5.1), are substituted in Eq. (3.12), we obtain

B+ 52 = L 60X00) f RGeS e ar

_ <w> (D) a<a<t>>

_ (w> o0y 202

t'K(t, e 37 gy

’K(t, e e gy
(5.2)
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For t > wg' we obtain

1+ (@) ro o + 2

= Sk Poyp) ( A ECE: SR
where
PO = [T R .
The corresponding equation for (b') is
1+ (@ @ oy + 82
= & @map) ~ (“’) @) G2

We obtain the equation of motion for the amplitude
f(¢) when we add Eqgs. (5.3) and (5.4),

[+ (@) rlo - S0 7)o L = o,
5.5)

where we have used Eq. (4.4).

When we set f = 0 in Eq. (5.5) we obtain the
steady-state condition, Eq. (3.6), for {(é),. The
steady-state equation (4.7) is the same to all orders
in 8. No matter how many terms in Eq. (5.1) we
retain, they contain only time derivatives of f multi-
plied by functions of f and {¢). Consequently, in the
steady state where all time derivatives vanish we
always obtain Eq. (3.6). When we retain higher and
higher powers of 8, we do not affect the steady state
but we obtain a more accurate description of the ap-
proach to the steady state. This is analogous to the
nonlinear Boltzmann equation where the solution
of the steady-state condition is local equilibrium
independent of the force law but where the non-
linear approach to the steady state is very com-
plicated and extremely sensitive to the force law.

When we subtract Eq. (5.4) from Eq. (5.2) and
consider times ¢ > wp’, we obtain

6 = oo 1 - (2 ewir | - (2)'r %2

If we now let { — « and use Eq. (3.6), we obtain

., _ 1 F 1 ] -
s=frli-Rar) oo

Equation (5.6) is the phase shift correct to second
order in 8. If we retain n terms in Eq. (5.1) the nth-
order phase shift is a sum of terms in which the nth
term is proportional to F7}. Since the steady-state
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condition only requires ¢ to be a eonstant, we have
to retain an infinite number of terms in Eq. (5.1)
to get the rigorous frequency shift in the steady
state. If 8 is small the series converges rapidly. Since
(F}/F%) is of order one, the second term on the right-
hand side of Eq. (5.6) is less than .001 in typical gas
lasers at room temperature.

VI. STEADY STATE OF A GAS LASER

The steady-state electromagnetic energy density
is a transcendental function of ¥, and A. Although
we are unable to investigate the function analyt-
ically, we can obtain many of its properties qualita-
tively. In particular, we show that the structure
of the energy density versus cavity frequency curve
is a sensitive function of 7,.

When we combine Egs. (4.7) and (4.6), we obtain

4T, fy Nwp/ewr)
T.V wLTrF2(172; 5) ’

where we have set ¢, = 1. We consider a gas laser
with free-particle motion, thus K,(r) in F? is
exp (—ir%). When 7, = 0, Eq. (6.1) is the usual
Doppler profile. Since F? is an even function. of
A, the curve is a symmetrical function of @ about
wy. We obtain the cutoff frequency O by setting
f. = 0in Eq. (6.1). The energy density has relative
maximum at A = 0 for all 7.. However, as 7, in-
creases this relative maximum grows considerably
less than the Doppler curve at A = 0. Consequently,
as we show below there can be—and is—a dip in
the center of the Doppler curve if 7, is sufficiently
large.

The necessary condition that Eq. (6.1) has a
minimum is that 6F2/8A vanishes and the sufficient
condition is that 8°F%/8A% is greater than zero. We
find there is a minimum for A% << 1 which we denote
by An,

= 0 - 6.1)

2 dz(ﬁz)] — [ 1—7 ]
““‘{@@)"63+5ﬁ+ﬁ’ 6.2

where

d2n(72) = j; 7% dr.

For Eq. (6.2) to be true A, must be much smaller
than one, which means that 7, must be much greater
than two. However, such a large 7, requires a very
large pump power and is unobservable.

If we drop the condition that A, be very small
and ask only that |A,.| < 1, the condition on %, be-
comes considerably less severe. The exact location
of the minimum requires the solution of the trans-
cendental equation

1991

f rsin Anre e "7 dr = 0. 6.3)
[}

When 7, is O(.1), |A,] is less than or equal to one.
In this region the minimum condition is very sensi-
tive to changes in 5,. We show the qualitative struc-
ture of the energy density curve in this region in
Fig. 1.

-
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F1a. 1. Dimensionless energy density as a function of cavity
frequency £ for ¥, ~ 0.1 and for {Q*| > {ul. The curve with-
out the dip ig the Doppler profile. If [Qn| > |0*| the only
observable effect is a flattening of the Doppler peak.

If 7, is very much smaller than one, there is no
solution for |A,| < 1. In the He-Ne gas laser under
normal conditions 7, ~ .02,

When we expand Eq. (6.3) to first order in 7,
we obtain

= ﬁz%f 7 cos Ar exp (—7°/2) dr |
¢

A=Am

=5 2 Wi
=7 535 W) (6.4)

B=En
There is no analytic expression for W(&); however,
for A > 1, W(&) approaches —(A)™%. Thus, for
A > 1, we obtain

AL exp ( — 1A%) = 2,

The solution corresponding to a minimum occurs
for A > 2. Consequently, for 7, < 1, there are sym-
metrical dips in the energy density curve as shown
in Fig. 2. However, A > 2 means the dips occur for
Q greater than twice the Doppler width. As a result
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.F1a. 2. Dimensionless energy density as a function of cavity
frequency € for 7, < 1 and for |Q*| > }le. The curve without
the side dips is the Doppler profile. If |2.] > |©* then only
the peak above the side dips is observable.

the side dips will usually be unobservable because
the power requirement is too high and because multi-
mode operation would mask the dips.

The relaxation frequency 7, is a purely phenomen-
ological constant representing relaxation of the off-
diagonal matrix elements of the density matrix for
the internal degrees of freedom. We have shown that
the structure of the energy density as a function of
Q is very sensitive to changes in %,. Collisions have
the qualitative effect of increasing v, because, as
we show in the Appendix, the presence of collisions
changes 7, to 7, 4+ ¥, where 7, is the collision fre-
quency. Consequently, any change in conditions that
increase 7, will effectively increase 7,. Since we ex-
pect 7, to depend at least weakly on pump power, the
effective 7, will depend on pump power.

As a result of the above discussion we see that a
center dip may not appear in the energy density
curve, but if 7, is increased sufficiently a dip will
appear. In recent experiments®** no dip was observed
until 7, was increased (by changing isotope mass)
and then the dip appeared. Also, in addition to
the usual power dependence, the dip structure has
a power dependence which might be due to 7,’s
power dependence.

VII. DISCUSSION

We have shown that the SCFA for a system of
N two-level systems remains valid when we include
the center-of-mass motion, dissipation, and pumping.
The nonlinearity, although small, plays two funda-~
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mental roles. The nonlinearity determines the steady
state and, dynamically, the nonlinearity is respons-
ible for picking out the steady state as the only al-
lowed solution of the manifold of solutions of the
linearized theory. Bogoliuboff-Kryloff® call this be-
havior quasi-linear. The dominant condition neces-
sary for quasi-linearity is 8 < 1. In our quasi-linear
theory the steady-state conditions determine the
steady-state amplitude f, and the steady-state pop-
ulation inversion {¢),. A dynamical solution to all
orders in 8 affects only the rate at which these
steady-state values are approached. Consequently,
as long as 8 < 1, a solution to all orders in 8 reduces
essentially to a calculation of the frequency shift to
all orders in 8.

We observe that if simple rate equations have the
correct steady-state values for {2 and (¢), built into
them and if the dynamics of the approach to the
steady state are not determined, then the only dif-
ference in the single mode steady-state predictions
will be that the SCFA equations determine the
frequency shift and the rate equations do not. How-
ever, we emphasize that we proved that as a result
of the nonlinearity the steady state is approached
rapidly; whereas, in the simple rate equations the
approach to steady state is built into the form of
the equations by assumption.

If 3> 1, the radiation and matter would exchange
large amounts of energy before the center-of-mass
motion has an appreciable effect. Consequently, we
would have relaxation oscillations. Since relaxation
oscillations are not observed in gas lasers, we may
infer that g is of order one or smaller. This depend-
ence of the solution on § is very similar to the Van
der Pol equation. When the nonlinearity is small, the
Van der Pol equation behaves quasi-linearly. When
the nonlinearity is large, the Van der Pol equation
has relaxation oscillations. To emphasize the simi-
larity of our equations with the Van der Pol equation,
we point out that Eq. (4.3) is the quasi-linear theory
amplitude equation for the Van der Pol equation.
However, there are differences. In the Van der Pol
equation the first-order frequency shift is zero;
whereas, we obtain the frequency shift given in Eq.
4.8).

We are now carrying out the multimode case.
Since the number of frequency shifts the theory must
predict increases, the difference between the SCFA
and the simple rate equations increases. In the pres-
ent paper the pump and the dissipation are treated
as fixed numbers. Since they are really stochastic
variables, we are also generalizing the present for-
malism to include noise. Above the threshold the
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main effect of noise is fo give our steady-state
oscillation line a width. The shape of the line depends
on the amplitude of the noise and on the noise cor~
relation time. Below threshold the problem is much
more difficult because there is competition between
noise and particle-field correlations.

APPENDIX

The Hamiltonian for the center of mass is
1 N " 1 N N
—%;Pa-F“z“Za:;V(Xa*Xﬁ)
N M
+'}: Z:IKX; - ﬂ%

where we are considering a model of N active atoms
and M pump atoms. The potential energy between
active atoms is V(X, — Xp) and U(X, — =) is
the potential energy of interaction between the ath
active atom and the ¢th pump atom located at the
point 5;.

In order to obtain the equation of motion for
the distribution function of the center-of-mass
coordinates, we take the trace over all variables
(except the center-of-mass variables) in the equation
of motion for the density matrix of the entire system,
The result is

GFN(Xl M PN) P aFN
at + za: m 80X
- X5 12 V. - X 35 ofy
aF
~ 3X. [Z U, — ):t aP.
3P aFN

— yhiary Z Ka'se) + (aoh)] = 3%, D =0. (A1
Except for the last term in Eq. (A.1) we have the
classical Liouville equation for N atoms interacting
through V(X ., — X,) and inferacting with M pump
atoms through U(X, — ;). The last term in Eq.
(A.1) represents the effect of the radiafion processes
on the center-of-mass motion, and it is small com-
pared to the other terms in the equation. We neglect
this term because the lowest order to which it con-
tributes is (yN%)°, and it makes no contribution to
the SCFA.

If we neglected the interaction of the atoms among
themselves, we could reduce Eq. (A.1) to a linear
equation for F;, the one-particle distribution func-
tion. This is often a good approximation since col-
lisions of active atoms with pump atoms are often
10° times more frequent than collisions with active
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atoms. However, in any case, the density of atoms
is sufficiently low so that a Boltzmann desecription
is valid and Eq. (A.1) reduces to the following non-
linear equation for F,

aFl(X, V, t) Fl

d
Y +V

= JulF,) + Jul), (A2)

where
TulFy) = f_: &V, f:’ de f: bV — 7

X AF(VF(V}) — F{(V)F(V))},
Tl = f: &V, fo" de f: Qb |V =V,

X AR(V)5(V3) — Fu(V)5.(Va)},

and where &,(X, V, f) is the distribution function
for the pump atoms which we assume we know. V*
and V} is the solution of the two-body problem for
initial velocities ¥V and V,. The impaet parameter
is b. We can linearize the nonlinear term in Eq.
{A.2), and we obtain

aFl(}%t V,t + V c')F,
= [ Luv, vORx, v, n v

+ [ Lav, vVIEE, V', 0 8V, (A3)
where the term with L, is the linearized Boltzmann
equation. The term with L,, is the linear Boltzmann
operator for collisions with pump atoms and is a
function of (X, V, ¢), the density of pump atoms.

The functional of the center-of-mass motion needed
in See. IIl is

K@, t") = (L@
= [ rensixve | xv, ¢ - )]

X TX)F}(XV) &X &V &°X’ &°V’, (A4)

where F] is the steady-state solution of Eq. (A.3)
and g[X'V’ |XV, ¢ — ¢)] is the Green’s function
of Eq. (A.3). The Green’s function depends only
on the time difference. For free particles we can
write Eq. (A.4) in the alternate form,

K.(r) = f (X — VATXFYX, V) X &'V
(A.5)

When we neglect collisions, take F! to be the
Maxwell-Boltzmann distribution, and consider rec-
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tangular geometry, we obtain

K.(’r) = Q(L_3 fsinz kX dsX) exp ( — &hr’/2)
~ eXp ( — w%TZ/z)’
3 _

where w3 = k*(ksT)m™'. We have replaced L'
J sin®X dX by % since the remainder is proportional
to (A\/2L) where A is the wavelength of the cavity
mode and L is the length of the cavity. In most gas
lasers the ratio is of the order of 107°. However, in
multimode operation we have terms that are pro-
portional to the difference of the wavenumbers,
k — k', where k' is a nearby mode. Such terms are
sensitive to large scale density variations including
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density gradients at the walls. Thus, in multimode
situations we must be more careful about ignoring
the spatial dependence of F?.

If we replace the collision operators in the right-
hand side of Eq. (A.3) by a relaxation time approxi-
mation, the Green’s function is

SlkV | kV’, 7] = &8V — V’)e—’/”[cos V).
Then K,(r) is
K, (1) = exp ( ~ wpt /2) exp ( — v.7),

where », is the collision frequency. The inclusion of
a collision frequency is thus formally the same as
replacing », by (v, + ».) in the SCFA.
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The role of the electromagnetic null field, within the framework of classical relativistic electro-
dynamics, has never fully established. The object of this paper is to present a large class of exact
solutions to the Einstein-Maxwell null field equations with the hope that the physical implications
of these solutions may lead to a more thorough understanding of these fields.

In the present analysis, it appears that the nature of the solutions depends on the form of the
propagation vector. In the cases for which the divergence of this vector vanishes, an extensive class
of solutions is obtained and particular examples are considered. The analysis of the case when the
divergence is nonzero is far from complete and only a particular solution is given.

1. INTRODUCTION

N its original form, Einstein’s theory of gravitation

is based on the representation of the gravitational

field by a symmetric tensor whose components, ¢.;,
are determined from the field equations

Ry — 39.,R = —kT;, (1.1

where R;; is the Ricci tensor based on g¢;;, B =
g''R;;, k is a constant and T';; is the energy-momen-

tum tensor. It is not difficult to incorporate into-

this theory Maxwell’s electromagnetic field theory.
This can be done by writing the energy—momentum
tensor in the form

Ty =T7 +T7, 1.2

where T}’ represents the gravitational and T{? the
electromagnetic contributions to the energy-momen-
tum tensor. In the empty space surrounding material
bodies, T'{¥ = 0, and, in such an instance, we need
only obtain the form of 7. It has been shown'
that under certain circumstances, the form of the
electromagnetic energy-momentum tensor is

Tff) = _%giiFaﬂFaﬁ + FiaF:'y (1'3)

where F,; is a skew-symmetric tensor satisfying the
equations

Fiw+ Fui + Friyy =0, (1.4)
Fi, =0, (1.5)
where the semi-colon denotes covariant differentia-
tion based on the Christoffel symbols {;k}
Since a choice of units can be made so thatk = —1,
it is usual to take
Ry — 39k = F. . Fi — %g-‘iFaﬂFaﬂ: 1.6)

1 A. 8. Eddington, The Mathematical Theory of Relativity,
(Cambridge University Press, London, 1937), 2nd ed., p. 132.

Fiju+ Fyi + Friiy =0, (1.7)

F”:i = Oy (1'8)

to be the field equations required to describe both

gravitational and electromagnetic field phenomena
in the empty space surrounding material bodies.

In 1924, Rainich® showed that, if RR** = 0

then the Einstein-Maxwell equations are equivalent
to

R =0, R.R"=18RsR”, (1.9
Qi T @iy = 01 (110)
where
iikl a«
i € Rl (1‘11)

© T (—o'RR
¢'™*! being the well-known permutation symbol.

Fields for which R.;R** = 0 have now become
known as null fields. Rainich felt that the invariant
R.sR** should behave like a regular function of
a complex variable. If such was the case, then
R.sR** # 0 in any domain of space-time would
imply it was non-zero except for a finite number
of points in any finite region. This argument is not
very convincing because it is not true, for example,
for the invariant B = ¢*'R,;, which is zero outside
matter and non-zero at points inside matter. As a
second example, one has in Newtonian gravitational
theory the fact that the potential inside a spherical
shell is constant and outside it is a variable.

It is clear, however, that if null fields cannot
be excluded, then the Rainich formulation is not
equivalent to the Einstein—-Maxwell formulation of
a combined gravitational and electromagnetic field
theory.

The Rainich result was rediscovered by Misner
and Wheeler® who were attempting to reformulate

2 G. Y. Rainich, Trans. Am. Math. Soc. 27, 106, (1925).
3 C. W. Misner and J. A. Wheeler, Ann. Phys. 2, 525, (1957).
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many of the fundamental concepts of classical
physics. They noted, of course, the difficulty that
arises in the consideration of null fields and ex-
pressed the hope that such fields might be incor-
porated into the Rainich result by a limiting process
or by a more general formulation of a similar type.
Peres* proved that the first hope could not be ob-
tained and Hlavaty® proved that a general formula-
tion along the lines of the Rainich result does exist
which does not exclude null fields.

Null fields have been the subject of many in-
vestigations and, indeed, have been the subject of
several controversies. The subject of some of these
controversies has been whether or not one could
exclude such fields on physical or other grounds.

Our own interest in null fields does not stem from
the above-mentioned controversies, nor for that
matter, in an interest in incorporating them into
a framework of the Rainich type. As will appear
later, there seems very little reason why one should
abandon the original formulation given by Einstein.
With this attitude our interest in null fields is
almost entirely due to the fact that it is possible
to obtain a large class of solutions to the field equa-
tions which determine null fields. Indeed, it may
be that we are very close to being able to give a
complete set of explicit solutions. The major objec-
tive of the present paper is to establish these
solutions.

Misner and Wheeler adopted the name “an al-
ready unified field theory” to describe the Rainich
formulation of the field theory. Since a physical
theory does not stand or fall on the name given
to the theory, the discussion we give concerning
the right of this theory to be called a unified field
theory must be considered as belonging only to the
field of semantics. For this reason, the second section
is in no way pertinent to the major objective of
the present paper. Since several authors seem to
have accepted the Rainich formulation as a unified
field theory, it seems appropriate to at least voice
some objections to this classification of the Rainich—
Einstein—Maxwell field theory.

2. AN ALREADY UNIFIED FIELD THEORY

The name unified field theory would seem to
imply the existence of one or more field theories
in which two or more distinet fields play funda-
mental roles. It may be possible to formulate a
theory in which these two fields become different
manifestations of one and the same field. Einstein

4 A, Peres, Phys. Rev. 118, 1105, (1960).
s'V. Hlavat$, J. Math. Phys. (Cambridge) 40, 1, (1961).
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did this in the special theory by unifying the
electrostatic and electromagnetic fields into one
field.

In building a unified field theory it is important
to determine the number of components the funda-
mental field quantity will have in any given coor-
dinate system. This is not a trivial problem because
it is not necessarily true that the number of com-
ponents of the unified field should equal the total
number of components the two fields had in the
older theories, We need only site the example of
the generalization of Newtonian gravitational theory,
depending on one potential funetion; and Maxwell’s
electromagnetic theory depending on four potential
functions, to the Einstein-Maxwell theory in which
there are fourteen potential functions. Having de-
termined the form of mathematical representation
of the field, one must choose field equations by
means of which the components of the field becomse
determined. Normally these equations will be partial
differential equations of some specified order. The
question of whether this new theory should now
be considered as a theory of only one field, or a
theory of two fields in which interaction may take
place, or, for that matter, still two distinet theories
of two fields, with no interaction, is not an easy
one to answer. Indeed, it is doubtful if all physicists
would answer the question in the same way.

Misner and Wheeler adopt the point of view that
the fundamental field has ten components, and is
represented by the metric tensor g;;. The field
equations (1.9)-(1.11) are a mixture of second- and
fourth-order partial differential equations. Misner
and Wheeler go on to show that physical phenomena
that were formerly classified as either gravitational
or electromagnetic could now be explained in terms
of one field, namely the metric field g,;. In this sense,
one might say that a unified field theory has been
produced. This is, however, a point of view we find
difficult to accept. In accepting a given theory
as a unified field theory, it would seem to us that it
is more important to prove that certain equivalent
forms of the theory do not exist than it is to prove
that the theory can be placed into a certain specified
form. For example, if we have two distinct theories
based on real field equations L = 0 and M = 0,
then we would hardly say a unification takes place
if ultimately in some new theory the field equations
take the form L* 4+ M* = 0.

If we indeed leave aside the question of null fields,
then the physical content of any theory based on
Egs. (1.9)—(1.11) cannot be different from the
physical content based on the field equations (1.6)~
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(1.8). From our point of view, the question of whether

the theory is indeed a unified field theory must be
answered in this formulation as well as the Rainich
formulation.

Let us for a moment drop Eq. (1.8) and consider
only

— 39iR = F; ,F} — %g,-,-FaﬂF"p, (2-1)
Fn‘;k + F:’k;i + ka:i = 0. (2-2)

If we use a well-known calculation involving the
conservation identities for the electromagnetic en-
ergy-momentum tensor, we find

Rui:a - %R't' = Fmﬁ:ﬂFa-:' (23)

However the Bianchi identity implies that the left-
hand side of (2.3) is identically zero, therefore

R

F** ,F,; = 0. (2.4)

If |F:;] #£ 0 then (2.4) implies
F*% 4 = 0. (2.5)
Although |F;;| = 0 is a necessary condition for
null fields, it is not a sufficient condition. Hence
the exclusion of fields for which |[F,;] = 0 excludes

more than null fields. In any event, it would indeed
seem that the condition F**,; = 0 might, under
certain circumstances, legitimately be considered as
part of the equations of integrability of (2.1) and
(2.2). In fact, under rather mild restrictions on the
class of solutions of (2.1) and (2.2) which will be
of interest, the same argument can be extended to
fields for which |F,;] = 0. The argument depends
on a limiting process.

Although (2.2) is seemingly expressed in terms
of both fields F;; and g¢,;, this is not the case. Since
F; is skew-symmetrie, (2.2) can be written

Fn’.k + Fih,.' + Fk.'.i =0,

the comma denoting partial differentiation. But this
simply implies the existence of a vector ¢; such that

Fy; 2.6)

and this, of course, is quite independent of the
metric g,;. It therefore would seem to us that in
this form the theory should be considered to be
a theory of two distinet fields in which interaction
takes place, and should not be considered a unified
field theory.

Although there is nothing sacred about second-
order partial differential equations, the possibility
of a theory demanding field equations of the fourth
order is disturbing. The number of possible tensors
one can form from g,; and its derivatives multiplies

= Qi T Phs
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rapidly as the order of the derivatives increases.
One can give rather simple satisfying reasons why
the Einstein-Maxwell field equations should be
chosen if we restrict ourselves to second-order equa-
tions. On the other hand, it is extremely doubtful
if one could give similar reasons why the Rainich
formulation should be chosen over all possible
theories which could be advanced when the freedom
of fourth-order partial differential equations is
allowed.

Finally, the replacement of a given set of field
equations by a set of equations that are essentially
equations of integrability would we believe make
it possible to call any theory, involving the inter-
action of two fields, a unified field theory. For
example, consider the following simple generalization
of Einstein’s gravitational theory for empty space.
Suppose as before g;; is the metric tensor, and a;;
is a second symmetric tensor representing a field
of some kind. Consider the field equations

Qije = O! (27)
R.’i = (2-8)

where covariant differentiation is based on the
Christoffel symbols. Obviously, a;; = 0 gives the
usual form of Einstein’s gravitational theory, and
in fact @;; = MAgi;, A constant, is a solution which
yields the cosmological form of this theory. Other
solutions for a,; also exist. In any event, (2.7) and
(2.8) are completely equivalent to the equations
of integrability

@isy

Rijn =0, 2.9)

equations which are independent of a;;. This is of
course a trivial and artificial example. It does, how-
ever, illustrate the point we wish to make. There
must be more to a unified field theory than the
use of mere algebra and calculus to show that certain
forms of equations exist.

We are only too well aware of the fact that we
have not indeed given any definition of a unified
field theory. We have already indicated that this
is not easily accomplished, and, fortunately, was
not necessary for the given discussion. At best,
the present section is a mild protest against the
use of the term unified field theory for this particular
theory. Regardless of its classification or form, the
Einstein—-Maxwell theory is still of interest and, due
to the nonlinear character of the field equations,
explicit solutions are difficult to obtain. Any pro-
cedure which generates infinite classes of such solu-
tions, corresponding either to null or non-null fields
is of course of interest in that physical implications
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of the theory can then be investigated in some detail.
3. THE FUNDAMENTAL TETRAD
In the following analysis, it is assumed that we
are dealing with a Riemannian space of signature
{—, +, -+, +). For reference purposes we list the
following:

= w0l = G +{Gh0)
B {Z‘}[log (=M. @D

{:k} = %g"a(gku,i + Jaje = gik.a)y (3,2)

g = det (g:,). {3.3)

It is also convenient to introduce the dual of F,;
which is denoted by *F;; and defined by

*Foi = H—geinF™. 3.4)

In terms of F,; and *F,; Eqs. (1.6)~(1.8) may be
written

R — %QUR = F..Fy + *Fia*Ft;': (3-5)

Fi, =0, *FH = 0. (3.6)
An electromagnetic field is null if the Lorentz in-

variants E-H and E° — H® are identically zero.
The tensor equivalents of these conditions are

F“‘F” = 0, *F“Fii = 0- (3.7)

Hence, Eqgs. (3.5)~(3.7) together with the identity

gii:x = 0 form the complete set of field equations
which determine null fields.

If P is an arbitrary but fixed point in space-time,

it is always possible to choose a reference frame
such that the expressions

-1 0 0 0
1 06 0
gii == O y (3.8)
0 610
L 0 0 0 1
i 0 -k 0
Fi = 0 &k Of 3.9
—k 0 0
\0 0 0 0

are valid at P. The last expression follows from the
null conditions (3.7); & is an unknown constant.
Furthermore, the coordinate transformation

7 = k' — (&/2k), 2 =k + (/2k), (8.10)
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can be used to produce a reference frame in which

0100 [ 0010
“_1000’ P, = 0000/ 3.11)

0010 -1000

0001 0000

Equations (3.11) can be used to define a tefrad
of basis vectors. It is clear that F,; has only one
eigenvalue, namely zero. Also, it defines at P the
eigenvectors

w' = (0, v, 0,0), (3.12
B = (0,7,0,1), (3.13)

where w* and 7 are arbitrary constants. The vector
w* is null and is uniquely determined up to a mul-
tiplicative constant. The unit vector A is determined
only up to an additive multiple of w’. If e, is a unit
vector which is orthogonal to w* and A’, then it
has the form

e; = (£ 0, 1,0), (3.14)

where ¢ is arbitrary. The vector ¢; ean be used to
obtain a particular vector in the direction of w’.
This vector is denoted by w; and defined by

w, = Fe = (1,0,0,0). (3.15)

The basis can be completed by the addition of a
second null vector. Denoting this vector by a; and
defining it by the relations

aw;, =1, d'a; =0, (3.16)
a'e; = 0, a'h; = 0,
it follows that its components are given by
a=(TE2T 1 —n). (3.17)

It can be shown that ¢ and 5 may be transformed
away without affecting the form of (3.11), i.e., there
is a reference frame such that the covariant compo-
nents of the basis vectors are given by

w; = (1, 0,0, 0)1 a; = (O: 1,0, 0)1 (3.18)
€; = (09 0: 1: O): hs’ = (01 0: 0; 1)'
Hence, from (3.11), (3.4) and (3.5) one can conclude

g:; = wia; + w;e; + ee; + by, (3.19)
Fi = we;, — we, (3.20)
*Fop = wh; — w;h,, (3.21)
BR;; = 2ww,. (3.22)



NULL FIELDS IN EINSTEIN-MAXWELL FIELD THEORY

The field quantities have now been expressed in
terms of the basis vectors, which in turn are de-
termined by (3.22), Maxwell’s equations:

we + we; — e, w; — ew;,; = 0, (3.23)
w'h; + whi — B, — Bwy, = 0, (3.24)
and the identities

gire = 0, (3.25)
R = 2w'wy),; = 0. (3.26)

Equations (3.25) and (3.26), respectively, yield
(3.27)
(3.28)

If these expressions are evaluated at the point P,
then from (3.18) and (3.11) it follows that

w?;i = (09 Or Ox O)J (3‘29)
Wiz = (—wi:h 0: 07 O) (330)

Also, if (3.23) and (3.24) are evaluated at P then,
for j = 3 and 4, the results are

(w"w.-);; = 2wiwi:i =0,

w'aw; + ww;,, = 0.

W, = Wy, = 0, (3.31)
€42 — Wya = 0, (3.32)
hais — wWss = 0, (3.33)
w'y — wae = 0. (3.34)

But since ¢, is orthogonal to &; we must have
€s;2 + h3;2 = 0. (3-35)

Equations (3.20)—(3.35) may be expressed by the
following matrix:

@ a; Qg
Wi,y = 00 0 0 ) (3.36)

af 0 —a o5

af 0 —ay —oa

where the o's are the invariants,

a = w;a'al, (3.37)
a = w; 0w = —w' (3.38)
a = w;,a'e, (3.39)
a, = w;,;a'h’, (3.40)
of = w; e'd, (3.41)
of = w;h'd, (3.42)
s = w;, 'R, (3.43)
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evaluated at P. From (3.36) the following covariant
expression can be obtained:

Wi, ; — w,'_" = ag(wia,' - wfa,') + (ag e a"é)F.-,-

+ (ay — a¥)*Fy; + asleh; — e;h.). (3.44)

[Since the Christoffel symbol is a symmetric con-
nection, the semi-colons on the left-hand side of
(3.43) have been replaced by commas.] If (3.44) is
multiplied by w; and similar equations are obtained
by permuting the 7, j, and %, the equations may
be added to obtain

(w;,; — wp, )we + (Wi — Wy, Wi
+ (wm — 'w‘-_,,)w; = a5(e,-h,"wk + eihkw.'

+ e;,h,«’wg - k‘-e,-wk bl h,'ekw,' — h;‘e,‘w,‘). (3.45)

The above expression shows that «; plays a dominant
role in determining the form of w,. From the theory
of ordinary differential equations it is known that
the vanishing of a; is a necessary and sufficient
condition for w; to be a product of a scalar and
a gradient. In such cases it has been found, that a
reference frame ean be introduced in which the metric
tensor can be expressed in terms of four unknown
functions. Furthermore, the form of the metric is
such that the determining field equations are sim-
plified to such an extent, that a general solution
is obtainable under rather weak restrictions.

4. THE EQUATIONS OF INTEGRABILITY

The basis vectors are subject to the following
integrability conditions:

Wi — Wiy = WR, i, 4.1)
Giiix — Gis = @ Raiin, 4.2)
Ciie — €rizi = € Raiin, (4.3)
hiin — hini = B°Raiine 4.4)

The above equations can be evaluated at P, thereby
expressing all of the components of R,;; in terms
of the o's and other fundamental invariants. For
example, a major restriction on a, and a; can be

obtained from the equation
Ry = Rye = 2waw, = 0. 4.5)

It is easily seen that the standard identities for
R, ;i imply that (4.5) is equivalent to

Rzss + Ryuey = O:
which by (4.1) becomes

(4.6)

@7

Wy, — Wages -+ Wagae ™ Wegas = 0.
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A straightforward computation will show that (4.7)
reduces to
4.8

This result is significant in that it yields a sufficient
condition for the vanishing of a5, viz., that the
divergence of w; be identically zero. Hence, it would
seem that the problem could best be discussed by
a consideration of the two special cases w',; = 0
and w';; = 0.

5. THE METRIC TENSOR

If it is assumed that o5 vanishes which is certainly
the case when w';; = 0, then by (3.45) it is possible
to put

2 2
Qg,2 = 2012 - .

6.1

where 7 and w are unknown invariants. It is possible
to choose a reference frame such that the contra-
variant vector w' has the form

w' = (0,¢,0,0), (5.2

at all points in space. In this reference frame w
must be independent of 2*. Also, since w; is not
identically zero, it must be a function of at least
one of z', z°, or z*. There is no loss of generality
in assuming that w is a function of z*, and then the
coordinate transformations

T
w; = ew ,

1 1.3 4 -2 _ 2
F =w(, 2,29, x z, .3
i = 2°, & =zt
leave w’ unchanged, and simplifies w; to
w; = ¢'(1, 0,0, 0). (5.4)

The vector e; is related to w,; by the Maxwellian
equation

Fiow+ Fui+ Fry =0, (5.5)
which may be written explicitly as
wilesn — €,) + wiless — i)
+ wiles; — 6,0 = e;(win — wiy)
+ ei(wes — win) + oelw; — w; ). (5.6)

If this equation is considered in a reference frame
in which (5.4) holds, then putting 7 = 1 we have

(6.7

where it is implicit that j or k¥ cannot equal one.
Equation (5.7) may be rewritten to read

(€e)r — (€e),; =0,

from which we can conclude that

ee;r — €,;) = eer.; — €;74),

(5.8

e; = 6_1[.(.'; + E’w,' (5.9)
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where ¢ is an unknown and x is some function
independent of z*. Since the additive multiple of
w; does not effect either F;; or g;; there is no loss
of generality in putting £ = 0.

A similar argument can be applied to *F;; and
a corresponding result for A; can be obtained, i.e.,
we may assume that

T

€ =€ Wi, (5'10)

h,‘ == e"rv,,-,
where u and » are independent of 2°.

It is clear that the coordinate transformation
F =, (5.11)

is admissible and that it does not effect the form
of w' and w;. In the new reference frame, e; and A,
simplify to

=1 1

=z, F=2 |F=y,

e; = (0,0,e77,0), (5.12)
hi = (0,0,0,¢e™7). (56.13)

It seems that little information is available con-
cerning the form of a, but it is known that
w'a; = 1. Hence, the most general expression for a,
must be

O = e-'r(a’ 11 By ’Y)s (5'14)

where «, 8, and v are unknown functions. Finally,
(5.4), (5.12), (5.13), and (5.14) can be combined
with (3.19) to yield

2 1 B ¥
1 0 0 0
Jep = (5.15)
B 0 e* 0
¥y 0 0 ™

For reference purposes we present the following
equations which are a consequence of (5.15):

0 1 0 0
e L R CRT)

0 —B" e 0

0 —v 0 &
log (—g)t = —2r, (5.17)
o= —2a+ (6 + ). (5.18)

6. THE FIELD EQUATIONS

The assumption

w' =0, 6.1)

implies the existence of a reference frame such that
the metric tensor is given by (5.15). Furthermore,
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condition (6.1) gives the extra restriction that = is
independent of z°. This being the case, the nonzero

Christoffel symbols are
1 Ty 1y

{ }= T {13} - {14} = i

- lsezf(»e.l - a.a) - ‘73”(’)’.1 — o),

11
2
11 =t T 0

2 — BB+ vr.2),

1
R

=a4— 3072+ v — %.3321(3.4 - ’Y.s)y

{123} = a5 — }oBs + Bra — he¥ v — B.4),

2
%3.27 {24} = %7.2:

{323} =f:+ 6‘271'.1 + B8rs — YT (6-2)
<324} = %(7.3 + }3.4) + 87+ 7.3

2 —27

{44} = 7.4 + [ Ta — 87‘3 + 77.47

3 27

{11} =¢ (Ba,+ 8.1 — 05.3)7

{]‘:52} = %821-6.27 {?3} = %821'63'2 - T,

3 27

{14} = 3"(By.: + B — 7.2)s

oo {2} e )
33 = =T.,3: 34 = T, 45 44 +33
4 27

{11} =e"(ya + 71— o,q),
IS T
4 1,27

{13} = 3€ (Tﬂ,z + v~ ﬁ.4)y

41 {4} _
= T4 3 - T.3y 4 - T,4y

From (3.1), (3.22), and (5.4), the field equations are

(=27).:; — {:;}a + {i; 05}

+ 2{;’;}7 = 2776'},  (6.3)
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and in turn,
Ry = —an + 3780’
+ (r.2) = Bas — 72l =0, (64)
R, =0, (6.5)
Ryy = —3B8.2 = 0, (6.6)
Ry = =37 =0, 6.7)
Ry = =Vt — (Bs + Bris — v7.4) 0
+3B2)" =0, (638)
Ry = —[3(ys + B + Bra+ v74l
+ 3.v.=0, (6.9
Ru= —V’'r — (ya— Brs+ 7700
+ 302’ =0,  (6.10)
where
V=Tt T (6.11)
It is apparent from (6.6) and (8.7) that
B ="+ &, (6.12)
v =’ 4 1, (6.13)

where the £'s and 9’s are functions of z*, 2°, and 2*.
When £ + 5* % 0, a straightforward calculation
shows that £, 5 are given by

_ ~2¢,3V3¢

£ = _ =20,V
¢y T+ s

’ o' + ol

where o(z", 2°, ) is a solution of

, (6.14)

2 2 b4 2 2(V2¢)2
Viog [Vieles + ¢l + 335 = 0. (6.15)

¢s+ @
It can be verified that this equation is the only
restriction that must be placed on ¢, i.e.,, the other
field equations which involve ¢ and 3 are satisfied
identically if ¢ is a solution of (6.15). The most
general solution for ¢ involves four arbitrary func-
tions. It is easy to show that if ¢(2°, 2*) is one solution
of (4.15) then o(u, »), where p = u(z® + 4z*) and
v = v(z® — 4z*) are arbitrary functions, is also
a solution. However, it seems unlikely that the
general solution can be presented in any reasonably
simple form. For example, if it is assumed that

¢ = ¢(2°) then (6.15) becomes

{log [e.a:(e.2)’]} as + 2%?): = 0. (6.16)

It is possible to integrate (6.16) and express z° as
an explicit function of log ¢ ;. Unfortunately, the
expression is too complicated to be inverted in order
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to obtain an explicit expression for ¢ ;. It is easily
seen that two particular solutions of (6.16) are

0. = (@ (6.17)

It is shown later that these solutions actually cor-
respond to rather general situations.

Up to this point no mention has been made of
the field equations

Ru = 2627, R13 = R14 = O- (6.18)

These equations turn out to be extremely com-
plicated and it seems unlikely that a general con-
sideration of these equations will lead to anything
useful. Hence, in the following sections we, by placing
rather weak restrictions on «, (5, and v, obtain
various rigorous classes of solutions of the field
equations.

3
¢.3=xy

7.CASEL g+ o> = 0

For this case the field equations are

Ry = Ry = —V?r =0, (7.1)
Ry, = Res = Ry = Ry = 0, (7.2)
R, = —a, =0, (7.3)
Riy= —asn—30s~B4da=0, (749
Riu= —ap— 36— 75:=0, (7.5)
Ry, = Va— @2a— 8 —y)amn

'_Ol,z(ﬁ.a + 7,4) - %(3,4 - ")’.s)2
—2Ba,05 — 270,54 — (13.3 + 7.4),1
—2¢", (7.6)

where
s 62 62
= (ax3)2 + (ax4)2'
The general solution to (7.3)—(7.5) is
—B.s, (7.8)
%(’Y,s - B.a) =735 = _E.h (79)

where B is an arbitrary harmonic function and ¥ is
its harmonic conjugate. Since

(7.7)

Ao = —Y4 =

0—MNa=06-Ba (7.10)
there exists a function 8(z', 2°, z*) such that
B—B=106s v—F=0, (711
The coordinate transformation
F=z, F=2+6 =z =2z,
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puts the metric tensor into the form

22 1 B v
Ji; = L oo 0 (7.13)
B G & 0

¥ 0 0 7

If the bars are now omitted, then field equations
(7.4) and (7.5) can be replaced by

Bs =74= —ay
Bse= —7s-
By virtue of (5.14), Eq. (5.6) may be written
Via = 2(yys — 885 + B.) .5 + 267, (7.15)
or, alternatively,
Via = 20884 = vvu+ 7).+ 2. (7.16)
Placing

(7.14)

U=9vs—868:+ 8. (7.17)
and

V=84:i—vre+rvu (7.18)
we may write

Via=U;+ V,.+ 2. (7.19)

It is easily verified that U and V are harmonic
conjugates and therefore satisfy the relation

WU+ V) =U,;+ V. (7.20)
Hence the general solution to (7.19) is
a=30U+2'V) - 28,4+« (7.21)

where ¢ = o(z', 2°, z') is the general solution of
Vi = 2e2 (7.22)
The above results may be summarized as follows:

(i) There is a reference frame such that the metric
tensor takes the form

(7.23)

2
1
gi; =
8
Y

(i) B(=', 2% z*) and #(z', 2°, z*) are arbitrary
harmonic functions in the variables z* and 2°
v(z', 2%, 2*) is the harmonic conjugate of 8.

(iii) Once B, v and 7 are prescribed, « is given by
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a = 32 (yv.s — BB+ B.1) + 2*(B88.. — vv.e +v.1)]

— %85 + %ff e’ dz dz + o*, (7.24)
where z = 2* + iz* and o*(@!, 2°, 2') is another
arbitrary harmonic function.

(iv) From (3.20), (5.4) and (5.12), the electro-
magnetic tensor is given by

(0010

F,‘,'= 0000. (7-25)
-1 000
0000

(v) Since the metric tensor involves three arb-
itrary functions while the electromagnetic tensor
remains fixed, it would appear that a complete
knowledge of F.; does not uniquely determine the
metric of the space. Furthermore, it may be noted
that the field equations place no restrictions on the
variable z'.

8. CASE H. {’ + n? ?é 0, ® 22 = 0
From (6.4), (6.6), and (6.7) we infer that
8.1

where the &’s on the right hand side are independent
of 2°. Equation (8.1) together with (6.12) and (6.13)
can be used to obtain the following decompositions:

a = ga 22(:2:) +a2x +ao,

Ru — ( )R(2) (l) + RI((IJ)’ (8.2)
Ris = 2"Ri5 + R{‘a”, (8.3)
Ry, = 2R + R, (84)

the R’s on the right being independent of z°. If
@4 = 0, then the equation R% = 0 reduces to

£Es— 13 =0. (8.5)
Hence, there exists a u(z', 2°, z*) such that
E = U,3, N = Uq4. (8.6)

The funection % is determined by (6.4) which reads
Vu = (ws)? + @), 8.7

implying that ¢™* is a harmonic function. The trans-

formation

=3 —u

# = ¢ ¥ &' = harmonic conjugate of ¢,  (8.8)

preserves the form of g,;, but in the new reference
frame we will have

= —1/_1;3, 7 = 0. (8.9
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It is now possible to determine r [Egs. (6.8)-(6.10)]
and the result is

(8.10)

It can be shown that there is no loss of generality
in putting 7, and 5, equal to zero. Thus far we have
shown

= § log 2° + 7o(a").

B = (—=2*/2") + &,

o = a'gxz + [+ 1)

(8.11)
r=1%logs®, «y=0.
The equations R{Y = R = 0 yield
@, = 3( )*50.4“ (8.12)
Qg4 = -%(xa)i(é% £, + 50.43), (8-13)

and by direct integration

= ‘(x)*( £o+soa), (8.14)

an arbitrary function having been removed by a
transformation of the form

2 =7 + &, 2°). (8.15)
If (8.14) is substituted into (8.12), the result is

Vs —v,/2° = 0, (8.16)
where
v = £(2%F. (8.17)
The general solution of (8.16) is
v =12 fr [F(z® cos o + iz*)
0
+ G@@® cosp — ix")] cospdp  (8.18)

where F and G are arbitrary functions of their
arguments. Hence,

b= | P+ coseds, (819

an= 5[ @+ d,

where, in the usual way, the primes denote total
differentiation.

(8.20)

The only remaining field e(}uatlon which does not
reduce to an identity is B,, = 2¢*. A tedious
computation shows that this is equivalent to

vza _ ao 3
0

() 2+foaaz

31}
+ 2&(1,23 + 50.13 + %)‘ (50.4)2- (8-21)
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Sinece «,, and £, are known (see (8.19) and (8.20))
the general solution of this equation is

a =z f [F*(@® cos ¢ + i)
0

+ G*(2® cos o — iz')] do + of (8.22)

where F* and G* are arbitrary. o% is any particular
integral of (8.21).

The metric is now determined in terms of arbitrary
functions. However, many of the functions which
were transformed away, such as %, 7, ete., will
reappear in the expression for the electromagnetic
tensor.

9. CASE I, 2 -+ 2 5% 0, Vir = 0

In the discussion of Case I, it was assumed that
a,; was zero. The fact that this is not necessarily
the case can be shown by making the ad hoc assump-
tion that 7 is harmonic. For if this is the case,
then r can be removed from the metric by a coor-
dinate transformation. Hence, we may assume that
there is a reference frame such that

20 1 B v
1 000
gii = y (9'1)
g 010
vy 0 0 1
w; = (e'l', 0! 01 0)‘ (9'2)

As before, the dependence of «, 8 and ¥ on 2° is as
follows:

@ = }0.u(")" + w2’ + o,

(9.3)
13=332§+fo» ’Y‘-=x21)+170.
Field equations (6.8)~(6.10) reduce to
=3, na=137, fatns=#. (94

Assuming £y = 0 [if such is not the case then the
final result, ie., Eq. (9.13) follows immediately],
Egs. (9.4) imply

-2 -2
-‘{0(234 _xa) 7= ¢(x3)-:c4’

where ¢ and ¥ are solutions of
Vale — 2°° + 0. (¥ — 2’
+2(y — 2 —2") =0. (9.6

For an arbitrary 2°, let z* = ¢(z®). Equation (9.6)
implies

3 (9.5)

Yale — 2°)° = 0. 9.7
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Since £y 5 0 then we must have ¢ 30,4, ¥ 0. Hence
Yle@@?)) = ', 9.8y

a result which can be used to show that the general
solution to (9.6) is
V=o' +d,  e=2G—b, @9

where @ and b can be arbitrary functions of z'.

There is no loss of generality if we put b = 0,
in which case we have
2 2

f=ttm, = ———  (9.10)

Since
ad 3 — d 4

Ede® + ndat = -2(-—a;i3~_-—;f—), (9.11)
a rotation of the form

o _ 0’ — 2t o _ 2+ ar

T = (02+ 1))‘. ] T = (a2+1) ] (9'12)

can be used to obtain a reference frame in which
= —2/2°, (9.13)

As in the previous case, it is possible to justify
taking 7, = 0.
The net results of the above transformations are

az =1/, B=(-22"/7") + &,

7 =0.

vy = 0.
(9.14)

[The expression for a,,, follows from (6.4)].
The functions & and a, can be obtained from
the equations R,; = B, = 0. The results are

oy == "‘%(250/503 + &.3), (9.15)
Vi + 25,3/2° = 0. (9.16)

The solution to {9.16) is
& = H@E, 2, )/, 9.17)

where H is an arbitrary harmonic function. Once
H is specified o, is given by

oy = % °H) . (9.18)

The final equation to be satisfied is R,; = 26
This equation determines a,, and the resulting dif-
ferential equation is

2“0,8 2&9
xa (xs) 2

+ 0!250.3 + %(20,4)2 + 50,13:

Vzau - = 282f

+

(9.19)
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7 being an arbitrary harmonic function. If we put
uw="2=, (9.20)
equation (9.19) may be put in the form
Vu = 5 F@, o, 2, ©.21)

where F represents the right-hand side of (9.19).
The solution to (9.21) is

u = ff 1&*(901‘5—"—2'—g £ ;2> dz dz + () + (@),
(9.22)

where
(9.23)

z2 =2+ dit, z=2— iz’
and the functions ¢, ¢ are arbitrary.

This completes the analysis of Case II as «, 8
are now explicitly expressed in terms of arbitrary
functions while v is identically zero. In order to
complete the discussion relative to w',; = 0, it

would be necessary to consider the final case

Vir#0, az#*0. 9.29)

For this case, we have no suggestion for a possible
method of attack which might lead to a general
solution.

10. THE CASE wi; 5 0

The consideration of this case is far from complete,
for if w* ; ¥ O then the equations of integrability
become extremely unwieldy. However, we shall, by
a particular example, show that mathematical solu-
tions of the field equations do exist for which w' ; #0.

If we assume that w,,;, given in general by (3.36),
has a; = a4 = a% = of = 0, then

a ay O 0

0 0 0 0
Wi, =

0 0

0 0

It is possible to show that a; is zero. The calculations
leading to this result are rather tedious and will
not be given. With o; = 0 the analysis of Sec. 5
is applicable and the metric tensor can be put in
the form given in (5.15). It can be shown that the
field equations are satisfied identically if

2¢ 1 8 Y

(10.1)

— Qs [+ 43

-—Qs 02

g=1 0 0 O o2
0 &)? 0
vy 0 0 (:1:2)2
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0 010
Fi = 0000 , (10.3)

-1 0 0 0

0 00O

where
B = (@) *@® + 2%, (10.4)
= @")az* — §2°), (10.5)
=2 E 62 -+ 'Yz

o = ar xz (xz)z y (10.6)
g = &4 fe—sA dxl’ (107)
A = fadxl, (10.8)

& and 7 being arbitrary functions of z'. We do not
imply, however, that Egs. (10.2)-(10.8) are the
general solution when a; = 0.

11. SUMMARY OF RESULTS

It has been shown that the form of the propaga-
tion null vector w; depends on the invariant as.

The vanishing of a5, which is equivalent to
R.'i;kFia*Fkﬁ = 0, (11.1)

implies that w; takes the form e"w ;. It then follows
that a reference frame exists such that g,; is given by

22 1 B ¥

gu=|" 0 00 (11.2)
B 0 e 0
y 0 0 ™

The general solution for «, 8, v and 7 has not been
obtained. However, classes of solutions are available
for the following special cases:

V) (,3.2)2 + (’)’.3)2 =0

Solutions of this type have been discussed by
various authors. Peres,* and later Takeno,® con-
sidered cases where the metric was equivalent to
(11.2) provided that 8 = ¥y = 7 = 0. Also, Pandya
and Vaidya' presented a particular solution which
is similar to the solution given here.

The general solution for this case is:

'w‘;,' = 0,

8 H. Takeno, Tensor 11, 99 (1961).
71. M. Pandya and P. C. Vaidya, Proc. Natl. Inst. Sci.
India A27, 620, (1961).
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G) B(a', 2°, *) and =(z', 2%, z*) are arbitrary
functions, harmonic in the variables z° and z*.
(i) v(z', 2°, 2*) is the harmonic conjugate of g.
(iii) Once B, v, and 7 are specified,

a = 3[2%(yvs — B8+ B.0)
+ 2*(B8.s — vy« + v.1)]

— B, + % ff & deds + o, (11.3)

where z = z° + iz*, and o*(z', 2°, 2*) is an arbitrary
harmonic funection.
(iv) The electromagnetic field is given by

001
000
-1 0 0
0 00

P, = (11.4)

(== == R

0

One of the simpler solutions of this type is obtained
by putting

B=v=a*=0,

HEY + &,

The coordinate transformation

(x2 - xl)/\/éy z = (x2 + xl)/\/é: (11.6)
4

z2=2x,

T

(11.5)

a

t

y= IIZ3,
puts the line-element ds” into the form

ds® = —d* + d2* + dy®

+ dZ + 3" +2)de — d’, (L)
while F,; becomes
0 0 —1/v2 0
F,=| 0 0 IV2 0 18
/v2 —-1/v2 0 0
0 0 0 0

Hence this special case is of the form discussed by
Peres.
® B2+ (v.2) # 0,

For this case it is shown that a coordinate system
exists for which

w.‘”_ =0, az =10

o = a,2x2 + ay,

(2.8
7 = 1 log 2’ v = 0.

The functions & and @, can be expressed in terms
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of arbitrary functions F(z) and G(z) in the following
manner:

1 * 3 . 4
) =@T)?f; {F(2° cos ¢ + 1z%)

+ G(x® cos ¢ — iz*)} cos ¢ do, (11.10)
o, = —-% i {F'(z® cos ¢ + 1z*)
+ G cos ¢ — ix")} dp.  (11.11)

Once F and @G are specified, a particular integral
o% must be computed for equation (8.21). The
general solution for this equation is then

a =z f {F*(® cos ¢ + 12*)
1}

+ G*(2® cos ¢ — 12*)} dp + o, (11.12)

where F* and G* are arbitrary functions of a single
argument.

It seems unlikely that one can obtain an explicit
expression for F,; as e, is obtained by inverting the
arbitrary harmonic function ¢ ™ [see (8.8)]. However
it is not difficult to generate particular solutions.
For example if we put

u = —log 2°, (11.13)
F(o) = G() = as + b, (11.14)
F*(o) = G*(o) = a*e + b*,  (11.15)

where a, a*, b and b* are arbitrary functions of 2,
the results are

-— 2 1
( 20y — 27wax’ 1 :1::: + ma(@®} 0
1 0 0 0
gii = ) ,
— 1
xf + ma@*)t 0 (_xgj«} 0
0 0 0 1
L @)
(11.16)
where
a = 2% + wb*z® + 2n(a, — ma’)(@®)!.  (11.17)
F;; is given by (11.4).
(C) w‘:-' =0, (ﬂ.z)z + (7.2)2 = 0, Vir=0

Although 7 can be removed from the metric by
a coordinate transformation, it remains as an arb-
itrary function in w; = e'(z'),;. Hence, it will
probably appear in the electromagnetic tensor. The
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most general metric satisfying the above conditions
is

2 1 B 0
gii = L ooo , (11.18)

010

0 01

_ (x2)2 _ x2(x3H)'3 s
a = 2(1;';)2 2(1:3)2 + x (u* + u), (11.19)
-2  H

=3+ (11.20)

H(x', 2%, z*) and u(z, 2°, 2*) are arbitrary functions,
harmonic in the variables z* and z*. u*is a particular
integral of (9.21).
A particular solution for this case can be obtained
if weputr = 0and
H = az’2’, (11.21)
where a(z') is arbitrary. A straightforward computa-
tion yields
22 2 4
(11.22)
+ (2 — 3/2a%)(")’(log * — 1) + 2%,

o

2

8= —‘-;2;9— + azt. (11.23)

F;; is given by (11.4).
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(D) wé,; # 0, w; restricted as in (10.1)

The form of the solution is given in Eqs. (10.2)-
(10.8) and demonstrates that mathematical solutions
for this case do exist. Also the fact that w; = e'w ;

seems to contradict a result by Peres,® viz.
w; = ew,; implies w',; = 0.

The simplest solution of this type is obtained when
& = 7 = 0, B = z'. The metric is then given by

2

— 1 0 0
T
gu=| 1 00 0 (11.24)
0 0 (= 0
L0 0 0 (2

F,; is again given by (11.14).
12, CONCLUSION

In the present paper we have tried to outline
procedures by means of which several infinite classes
of solutions of the Einstein—Maxwell field equations
may be obtained. By examining in detail some of
the particular solutions, it is our hope that one
might gain some insight into the physical role of
the electromagnetic null field. It seems possible that
some of the solutions might be used, by a variety
of procedures, to produce classes of solutions to the
relativistic field equations that determine purely
gravitational fields.

8 A. Peres, Ann. Phys. (N. Y.) 14, 419, (1961).
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The perturbation technique which is based on a Taylor series expansion of the boundary conditions
at the perturbed boundary is extended to consider the problem of the diffraction of waves by a di-
electric object with perturbed boundary. Since this approach attacks the complete boundary-value
problem, the result is valid for the near zone as well as for the far zone and is valid for all frequencies.
In a way of illustration, the problem of the diffraction of electromagnetic waves by a dielectric cylin-
der with perturbed boundary is treated. A specific example on the scattering of plane waves by a di-
electric elliptic cylinder with small eccentricity is given. Numerical results are also computed for
this specific example and are compared with those obtained from the exact solution.

L. INTRODUCTION

XACT solutions of boundary-value problems in
the theory of electromagnetic wave diffraction

are available only for certain specific bodies of
relatively simple shape.''* For example, the available
exact solutions for cylindrical bodies without sharp
edges are limited to those with circular, elliptic or
parabolic cross-sections. The diffraction of waves
by a conducting or dielectric sphere, by dielectric
coated spheres and by a perfectly conducting disk
are the few three dimensional problems that have
been solved rigorously. The need for approximate
methods to treat the more general cases of diffraction
from arbitrarily shaped obstacles is quite apparent.
The variational principles®'* provide a very powerful
tool in obtaining approximate expression for the
scattering cross section; but it is not possible to
derive from the variational principles a description
of the electromagnetic fields. Furthermore, the suc-
cess of the variational approach depends to a great
extent on the trial function. At low frequencies,
the Rayleigh method®® is very successful. However,
the solutions of Laplace’s equation are still required.
At very high frequencies, the treatment of diffraction
problems by geometric and physical optics tech-
niques developed by Fock” and Keller® is very

* Supported in part by the U, S. Naval Ordnance Test
Station, Pasadena.

' R. King and T. T. Wu, Tke Scattering and Diffraction of
P;gge)s (Harvard University Press, Cambridge, Massachusetts,

2 C. J. Bouwkamp, Repts. Progr. Phys. 17, 35 (1954).

3P. M. Morse apcf H. Feshback, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc., New York, 1953).

4 H. Levine and J. Schwinger, Theory of Electromagnetic
Waves (Interscience Publishers, Inc., New York, 1951).

¢ Lord Rayleigh, Phil. Mag. 44, 28 (1897).

¢ A. F. Stevenson, J. Appl. Phys. 24, 1134 (1953).

7V. A. Fock, Phys. (USSR) 10, 130, 399 (1946).

$J. B. Keller, J. Opt. Soc. Am. 52, 102 (1962).

successful. An approximate or perturbation method
in the medium frequency range still remains to be
found. ‘

In the present work the boundary perturbation
technique®*® which is based on a Taylor expansion
of the boundary conditions at the perturbed bound-
ary will be extended to consider the problem of the
diffraction of waves by a dielectric object with
perturbed boundary. Since this approach attacks
the complete boundary-value problem, the perturba-
tion solution for the field components is valid for
the near zone (i.e., near the obstacle) as well as
for the far zone and is valid for all frequencies.
In a way of illustration, the problem of the diffraction
of electromagnetic waves by a dielectric cylinder
with perturbed boundary will be treated. A specific
example on the scattering of plane waves by a
dielectric elliptic eylinder with small eccentricity
will be given. The more involved case of the diffrac-
tion by a dielectric sphere with perturbed boundary
can be solved in a similar manner."

It is hoped that this perturbation approach will
not only find applications in microwave and plasma
physics but also in collision theory, acoustics, me-
teorology and astrophysics.'”

II. THE PERTURBATION SOLUTION

It is assumed that an arbitrarily shaped dielectric
cylinder which has a permittivity e and a per-

? Reference 3, p. 1052.

P, C. Clemmow and V. H. Weston, Proc. Roy. Soc.
(London) A264, 246 (1961).

1 C, Yeh, Phys. Rev. 135, A1193 (1964).

125ee H. C. van de Hulst’s article in Electromagnetic
Scattering (Pergamon Press, Ltd., Oxford, 1963).
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meability p,, is embedded in a homogeneous dielec-
tric medium (e, po). The boundary of the cross
section of the dielectric cylinder (Iig. 1) takes the

Y
[ enl"l

0

Fi1a. 1. The arbitrarily shaped penetrable cylinder.

shape of a!perturbed circle which may be expressed
by the following equation:

Pr = Po[1 + 5f1(¢') + 52f2(¢) + - ']1 (1)

where p, is the radius of the unperturbed circle,
é is a smallness parameter, and f.(¢) are arbitrary,
single-valued, continuous functions satisfying the
condition

2 5@l <1, 0<¢<om
The cylindrical coordinates (p, ¢, 2) are used.

Let the given exciting field (which need not
necessarily be a plane wave) be denoted by E”, H'*,
the scattered field by E, H”, and the field inside
the dielectric body by E‘’, H*’. The zeroth-order
solution will be designated by a subscript 0, the
first-order solution by subseript 1, ete. Hence, the
resultant scattered fields and the resultant trans-
mitted fields inside the body are, respectively,

EY = E” + 6" + FE” + -+,

HY = H” + H” + ¥H" + -+, @)
and

EY = E” + B + ¢E" + -+,

HY = HY + HY + 2HP + - . 3)

The higher-order solutions are generated from known
zeroth-order solution;ie., E, H E¢ H, E?,
and HY are a,ssumed known qualities. For the sake
of clarity and simplicity, only the first-order solution
will be carried out in detail. The higher-order solu-
tion can be obtained in a similar fashion.

The boundary conditions require the continuity
of tangential electric and magnetic fields at the
boundary surface p = p,:

n x[E¥(p,, ¢,2) + E“ (p,, ¢, 2)]

=1n XE(‘)(Pm ?, Z), (4)

2009

nx [H(i)(Pm ?, Z) + H(‘)(Pm ®, Z)]
=n XH(”(Pw $, 2), ®)

where n is a unit vector outward normal to the
boundary surface and can be written as
6_11

n~e, — 3§ e (6)
to the first order in & in cylindrical coordinates.
e, and e, are, respectively, the unit vectors in p
and ¢ directions. f,(¢) has been defined in Eq. (1).
Carrying out the vector operations and expressing
Eqgs. (4) and (5) to the first order in & in component
form with the help of Eqgs. (2) and (3), one obtains

s (B9 (o, 6, 2) + B (0, b, 2)]

e, : a¢

%];l) E(L)(pm ®, z)’ (7)
e(b . E(l)(pm ¢7 z) + E(‘)(pm ¢> Z) + 6E(,)(pl’7 ¢7 Z)
= B2 (py, ¢, 2) + 01 (psy 4,2),  (8)

e ! ')(Pm $,2) + E(a)(Pm ®, 2)
4+ & {E:;) (pyr #,2) + afl [E(')(p,,,qS,Z) +Et§;) (05, ¢,Z)]}

= E(();) (Pmd’;z) + 6|:E:;) (Pm ¢,Z) + afl Eé;)(Pm ¢7z):l

©
e, : & % [H (0, 6, 2) + HS (0,1 6, 2)]
afl (t)
ad) (Pm o, z): (10)

€, - H(l)(Pm b, z) + Hé:)(Pm ?, z) + 6H(‘)(Pw ?, z)
= Hé:)(Pp; ¢, z) + 5H(”(Pm ®, z)) (11)
e, : Hé')(Pm ®, Z) + H(a)(Pm ?, Z)

+ 6{H§§3 (s, $,2) + 5 3% [H;”(Pmd’:z) + Hé;’(pp,¢,2)]}

_H((ll;)(l’md’ Z) + 5[H§;)(Pw¢:z) += af] H(”(qus:z)]
(12)

Equations (7) and (10) are satisfied by the zeroth-
order solution. We now expand the above functions
in Egs. (8), (9), (11), and (12) to order & in Taylor
series about the unperturbed boundary p = p,,
obtaining

E(‘)(PO; ®, Z) + E(')(po, o, z) -
{ (”(PO; ¢, z)

é:)(POy ?, z)
;:)(Po’ ?, z)
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- ﬁofl[E:”,(Po; ¢; Z) + El():)'(p(); ¢) Z)

- Eé:)’(Po; ?, z)]} ’ (13)
E;“(Po; ¢,2) + Eé;) (o, ¢, 2) — Eé;) (po, ¢, z)
= 6{E(1:s) (PD; ?, Z) - E(l;) (PO) ¢7 Z)
— pofilE" (poy 6, 2) + Eis (o, 6, 2)
Y Oy i
— B (o, 6,2 = L (B (oo, 4,2
+ EG (po, ¢, 2) — Es, (po, &, z)]}, (14)
H."(po, 6, 2) + HiZ (po, 6, 2) ~ Hil (oo, 6, 2)
= 5{Hﬁ)(90; ¢, Z) - Hi:)(p(h ¢, Z)
- PDfl[Hz“)’(pm ¢, Z) + Hé:),(POJ ¢, Z)
- H(():)l(PO: ¢r Z)]}, (15)
H;“(PO; 9, Z) + H(():S)(pOy ?, Z) - HO;t)(PO> ®, Z)
= B{Hié)(po, é,2) — H3 (po, 6, 2)
- P0f1[H;i),(P0y 9,2) + Hé;)’(PO, $,2)
(24 a 1 k3
— B (oo, 8, 2] = 2 T (oo, 6,2
+ Hc(';)(Po, d” 2) - H(();)(POJ ¢} Z)]}, (16)

where the prime signifies the derivative of the func-
tion with respect to p,. The left-hand sides of the
above equations are equal to zero by virtue of the
zeroth-order solution. Hence, the right-hand sides
of the above equations must vanish identically.
Rearranging and combining Eqs. (13) and (14) gives

[Ei'.)(po, ?, Z) - Ei:)(f’o: ¢, z)]e¢
+ [E;;) (PO; ¢7 Z) - E;t;) (PO) ¢’ Z)]e,

= (po, ¢, 2)e, + upo, , 2)e., a7
and combining Egs. (15) and (16) gives
[Hi (0o, 8,2) — HiY(po, 6, 2)]e,
+ [Hi(po, 6, 2) — Hi (po, 6, 2)le,
= 0:(po, ¢, 2)&4 + 0:(po, ¢, 2e., (18)

where
ui(po, ¢, 2) = pofi[Ec:’ (0o, 9, 2)

~ B (o ¢,2) — Ei (po, $,2)],
us(po; ¢, 2) = pofs[Esy (po, $, 2)

C. YEH

— E}? (po, ¢, 2) — E53 (po, ¢, 2)]
+% [E(():) (Po; ¢, Z) - E;i)(po’ 6, Z) _ Eé;),(f’m é, z)]’

vi(po, &, 2) = pofs[Ha:' (o, &, 2)

— H.” (po, ,2) — Ho (0o, ¢, 2)],
v2(po, &, 2) = pofs[Hss (po, ¢, 2)

— H” (po, ¢, 2) — Hag (0o, ¢, 2))]

+%% (H, (poy &,2) — H,”(po, ¢,2) — Hoy' (00, $,2))-
(19)

It is noted that the resultant fields given by Egs.
(2) and (3) must satisfy the wave equation. It is
therefore clear that each term in Egs. (2) and (3)
must separately satisfy the wave equation. Con-
sequently, the general expressions for the longitu-
dinal components of E{”, H{* E{”, and H{", that
are appropriate to the present problem, are'

By = [ 3 AHPIE ~ K el dh, 20
HY = f : zjj B.HP[(k2 — h*)?ple™e™™ dh, (21)
B = f m i@ CTI( — hDiple™e™ dh,  (22)
HY = f m ‘; D.J (k2 — ) ple™e ™ dh, (23)

where HP[(k2 — h*)}] and J.[(2 — h*?¥] are,
respectively, Hankel and Bessel functions, and ki =
w'uoeo and ki = «’use. A,, B,, C,, and D, are yet
unknown arbitrary constants that can be determined
from Egs. (17) and (18) using the orthogonality
properties of the trigonomatric functions. The trans-
verse components of EY, HY E, and HY can
be obtained from Maxwell’s equations with the help
of Eqgs. (20) through (23).

Substituting the expressions for E, HY, E¥,
and HY into Eqgs. (17) and (18), and making use
of the orthogonality properties of the trigonometire
functions, one obtains

AH [ — 1)po] — Codul(k: — B*)po]
1 2% —in
~ 5 | SGueetas, @
9 pgwrge gt o1 o B 9 2 _ pn
An apo Hn [(ko h ) pO] Cn s aPo Jn[(kl h’ ) Po]

13 J, A. Stration, Electromagnetic Theory (McGraw-Hill
Book Company, Inc., New York, 1941).
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= ;zuf‘f Ts(po, d)e” " dop,  (25)
B.H (ks — W pe] — D.J[(K: — h*)po)
1 27 in
=57 | Tale, @)™ ds,  (26)

O garae s 9 € 9 2 _ a2yt
B, ™ H[(ky — 1°)p] — D, . 3o Jal(ky — )" po)

’iwéo

=% . Sa(po, p)e ™ dop,  (27)

where S,, S,, T, and T, are defined as follows:

ul(Po; ?, z) =£ Sl(Po, ¢)e_“u dh,
wloo, $,2) = [ S, $)7 ah,
nlony 8,2) = [ Tiloo, 817 d,

vlon 6,2) = [ Talpo, )™ dh. (@8)

Uy, Uz, U, and v, are given by Eq. (19). The coefficients
A,, B,, C,, and D, can be found readily from the
above equations. Substituting these coefficients back
to Egs. (20)—(23) gives the first-order correction
to the electromagnetic fields due to the departure
of the boundary surface from a perfect circular
cylinder with radius p,. Higher-order corrections
can be found suceessively in the same manner. It is
interesting to note that in general the perturbed
wave will have all components of electromagnetic
fields even if the incident wave is a pure TE wave
(E'? = 0) or a pure TM wave (H'? = 0).
IOI. THE SCATTERING OF PLANE WAVES BY A
DIELECTRIC ELLIPTIC CYLINDER

As an example of the application of the theory
derived in Sec. II, the problem of the scattering
of plane waves by a dielectric elliptic cylinder with
small eccentricity will be considered. It is assumed
that the incident plane wave with its electric vector
polarized in-the z direction is propagating in the
direction of the positive x axis. The equation of
an ellipse is given by

n(klpﬂ)'] n(kopo) — (51#0/ 50#1) J, n(kopo)J n(kl Po)

WAVES 2011
_ Po
T TS
where
cifmla)] w
2 po + Apo/ I

2p, and 2(p, + Ap,) are the lengths of the two
axes of the ellipse. ¢4 is the angle between the z
axis and the major axis of the ellipse if § < 0,
and it is the angle between the z axis and the minor
axis of the ellipse if § > 0. For small eccentricity,
one has

Pr =2 poll + 880’ (6 — )] (31)
Comparing Egs. (31) and (1) gives
f:(9) = sin® (& — ). (32)

The unperturbed solution to the problem of the
scattering of normally incident plane (E) wave by
a dielectric circular eylinder is well known:

(€1Fo/ 60”'1)*H (koPo)J n(klpo) —H (I)I(kol’o)J n(k1po)
n(kOPO)H . (koPo)

(Gxﬂo/ 60#1)iH (koPo)J »(klpo) - H (U’(kopo)J n(klpo)

The prime in the above expressions denotes dif-
ferentiation with respect to kop, or k.p, as appropriate.

B9 = 2, Q)T (rop)e™e., (338)
X [%" Tukupe, — & J,,(kop)e¢:|e"”, (33h)
EP = 3 alyH G e, (342)
Hy” = iiuo »i a.(0)’
X [ﬁ H P (kop)e, — di H.f”(kop)e¢:|e‘"’, (34b)
E)" = f‘; ba(8)" a(k1p)e e, (35a)
o = mng ba(2)"
X [%" T )e, — o J"ac,p)eJe‘"‘, (35b)
with ‘
(36a)
I ukopo) H." " (Kopo) (36b)

To find the first-order perturbation solution, we
first substitute Eqs. (33) through (35) into Eq. (19)
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obtaining sions (37) into Egs. (24)~(27) and carrying out the

integration involving the angular functions. One has

us(po, ) = pofs Z a,,e

p=—x A“H,(,n(kgpo) - Can(klpﬂ) = Xns
Us(po, ) = 0 . :
D Aok H () — Culluon)(2) 2k =
v:1(po, $) =0, 1
® = =0 39)
we 4 O ine B, =0, D, !
”2(901 d’) = Pofl ,,az_;-, B,e + = 3¢ D’E‘n Yl (37) where
where Xn = %[Poan — ‘Poamze éa]:
o = (@)°[bk:J5(k1p0) 1 = —yiwuo[poBn — 30Bars”" " + Tpo¥asae” ], (40)
= ko (kopo) — aukoH;" " (kopo)], The following expressions have been used:
— P[ b kl J/I k a . 2 i(p~n)d
@) (k1 p0) f sin® (¢ — ¢o)e’"” de
[
+ '_0“ J"(]Copo) + 0 Hm (kopo)] = 7"[6zz.n - %G_ZMQ 52.(»—")]’ (41)
2
[ st @ = 60 b = ind by @)
= (i)p[ P(klpo) o
with
= e T ) — W*’ H“’(;ﬁapo)] (38) bm =0, r#m,
The expansion coefﬁcxents for the first-order per- =1 r=m
turbation fields are then found by putting expres- Solving Egs. (39) gives
A Nn n(klpo) - (klpm)Xﬂ “(klpo) 5 (43)
" koPoH - (koﬂo)J n(kuoo) - (kxpo)(ﬂo/ ﬁx)J n(kIPO)H G"OPO) ’
o Xa(kopo) He" (opo) — muH" (Kopo) = (44)
koPoH (kopo)J alkipo) — (kxﬂo)(ﬂo/ ﬂx)J u(kxpn)H (kopo)
Hence, the scattered fields correct to the first order or, using Eq. (45),
in & are i e |2
x “n .
@ ) o5 = — [(Q)"a, + 8A.] exp 7.(— - —) . (48)
EY = 3 [6)'a, + SAJHS (op)e™e,,  (45) ko la?= z 4
m Simplifying gives
& __];__ ‘ 2
H UJ)/J ”Z [(’I/) ay, + BAn] (rﬁ = k { Z (Z)na” exp 1'(__2“ — 'i_)
(1] "o —c0
M 8 4w :l ing @
X [P Hn (kﬂp)eﬁ dp Hn (kcp)e‘P e, (46) + 6[( E (i)nan exp i(’}'g — E))
Of particular interest is the behavior of the back- *
scattering cross section which is defined as the ratio ( > A, exp 2(—-2— — 2)
of the total power scattered by a fictitious isotropie n=—e
scatterer which scatters energy in all directions with ( (_ w))*
intensity equal to that scattered directly back to- n_z_; (@)'an exp ¢ 2 4
ward the source by the actual scattering object, -
to the incident power per unit area on the scatterer; X X A, exp z(%r — g)) ]}, 49)
ie, ==

(8} 2

. E,
5 = 1‘,1;113° 21er@'35%§ at ¢ =m, @n

where the star above the series indicates the complex
conjugate of the function. The first term on the
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right-hand side of the above equation represents
the back-scattering cross section of an unperturbed
circular cylinder, while the other term corresponds
to the first-order correction due to small eccentricity.
To qualitatively illustrate how the solutions be-
have, the backscattering cross sections as a func-
tion of frequency are computed. Numerical com-
putations are carried ouf using the high-speed IBM
7090 computer. It is assumed that ¢/e, = 2.0 and
u1/mo = 1.0. Two cases of perturbed cylindrical shape
are considered: § = 0.1, 0.05. Different angles of
incidence are used. Results are shown in Figs. 2
through 4. Numerical investigation shows that the
first order perturbation solution should be good
approximation to the exact solution for |3 < 0.05.
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Fia. 2. The normalized back-scattering cross section for an
elliptical dielectric cylinder. The direction of the incident
wave is parallel to the major axis of the ellipse. kopo is the
normalized semi-minor axis.
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F1a. 3. The normalized back-scattering cross section for an
elliptical dielectric cylinder. The direction of the incident
wave is parallel to the minor axis of the ellipse, kopp is the
normalized semi-minor axis.
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F1c. 4, Relative back-scattering cross section as a function
of the direction of the incident wave.
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Fr1a. 5. Comparison between the normalized back-scattering
cross section for an elliptical dielectric cylinder obtained
from exact solution and that obtained according to the
perturbation method.

It is always desirable to compare the results ob-
tained from the approximate approach to available
exact results. Numerical computations are therefore
carried out from the exact formal solution of the
diffraction of plane waves by dielectric elliptic
cylinder. The exact solution is given in terms of
infinite series of Mathieu functions.'* The compar-
ison between the exact results and the perturbation
results is shown in Fig. 5. It can be seen that the
agreement is very good. However it is expected that
for flatter elliptical cross section, higher-order per-
turbation solutions must be included.
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Erratum: The Clebsch—Gordan Series for SU(3)

SioNEY COLEMAN

[J. Math, Phys. 5, 1343 (1964)]
(Received 22 June 1965)

N Eq. (2), the symbol inside the summation sign should be (n — ¢, n’ — §; m — j, m’ — 9.
Also, in the last paragraph on p. 1343, (n, m; n’, m’) should be (n, n’; m, m’).

I am indebted to S. R. Deans for calling these errors to my attention.

Erratum: Transformation from a Linear Momentum to an Angular Momentum Basis
for Particles of Zero Mass and Finite Spin

H. E. MosEs

[J. Math. Phys. 6, 928 (1965)]
(Received 13 July 1965)

Equation (AI.1) on page 939 should read

—1 n+f dn+a+ﬂ . o
T T 2 F A e (0 97— L

The differential equation for @(x) on page 939 which follows Eq. (AI.5) should read
(1 — D)AQ)/de”] + [8 — a — (« + 8 + 2)z] dQ(2)/dz + n(n + « + 8 + 1)Q() = 0.

P,ﬂ"””(x) =
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